Module 3 : Sampling and Reconstruction

Problem Set 3

Problem 1

Shown in figure below is a system in which the sampling signal is an impulse train with alternating sign.

The sampling signal $p(t)$, the Fourier Transform of the input signal $x(t)$ and the frequency response of the filter are shown below:

(a) For $\Delta<\frac{\pi}{2 \omega_{M}}$, sketch the Fourier transform of $\mathrm{x}_{\mathrm{p}}(\mathrm{t})$ and $\mathrm{y}(\mathrm{t})$.
(b) For $\Delta<\frac{\pi}{2 \omega_{M}}$, determine a system that will recover $x(t)$ from $x_{p}(t)$ and another that will recover $x(t)$ from $y(t)$.
(c) What is the maximum value of Δ in relation to w_{M} for which $\mathrm{x}(\mathrm{t})$ can be recovered from either $\mathrm{x}_{\mathrm{p}}(\mathrm{t})$ or $\mathrm{y}(\mathrm{t})$?

Solution 1

(a) As $\mathbf{x}_{\mathrm{p}}(\mathrm{t})=\mathbf{x}(\mathrm{t}) \mathrm{p}(\mathrm{t})$

By dual of convolution theorem we have $X_{p}(\omega)=X(\omega) P(\omega)$.
So we first find the Fourier Transform of $\mathbf{p (t)}$ as follows :-
The Fourier Transform of a periodic function is an impulse train at intervals of $\omega=\frac{2 \pi}{2 \Delta}=\frac{\pi}{\Delta}$.
Strength of impulse at $\frac{k \pi}{\Delta}$ being:

$$
\begin{aligned}
c_{k} & =\frac{\pi}{\Delta} \int_{(2 \Delta)} p(t) e^{j \frac{2 \pi k_{t}}{2 \Delta}} d t \\
& =\frac{\pi}{\Delta}\left(1-e^{j \frac{2 \pi k}{2 \Delta} \Delta}\right)=\frac{\pi}{\Delta}\left(1-e^{j k \pi}\right) \\
& =\frac{\pi}{\Delta}\left(1-(-1)^{k}\right)
\end{aligned}
$$

Thus, we have can sketch $P(w)$:

Thus we can also sketch $X_{p}(w)$ and hence $Y(w)$:

(b) To recover $x(t)$ from $x_{p}(t)$:

Modulate $\mathrm{x}_{\mathrm{p}}(\mathrm{t})$ with $\cos \left(\frac{\pi}{\Delta} t\right)$.
$\cos \left(\frac{\pi}{\Delta} t\right)$ has a spectrum with impluses of equal strength at $\frac{\pi}{\Delta} \&-\frac{\pi}{\Delta}$. Thus the new signal will have copies of the original spectrum (modulated by a constant of-course) at all even multiples of $\frac{\pi}{\Delta}$. Now an appropriate Low- pass filter can extract the original spectrum!

To recover $\mathbf{x}(\mathrm{t})$ from $\mathbf{y}(\mathrm{t})$:

Here too, notice from the figures that modulation with $\cos \left(\frac{\pi}{\Delta} t\right)$ will do the job. Here too, the modulated signal will have copies of the original spectrum at all even multiples of $\frac{\pi}{\Delta}$.
(c) So long as adjacent copies of the original spectrum do not overlap in $X_{p}(w)$, theoretically one can reconstruct the original signal. Therefore the condition is:

$$
2 \omega_{M}<\frac{2 \pi}{\Delta} \Rightarrow \Delta<\frac{\pi}{\omega_{M}}
$$

Problem 2

The signal $y(t)$ is obtained by convolving signals $x_{1}(t)$ ans $x_{2}(t)$ where:
$\left|X_{1}(w)\right|=0 \quad$ for $\quad|w|>1000 \pi \quad \&$
$\left|X_{2}(\infty)\right|=0 \quad$ for $\quad|w|>2000 \pi$
Impulse train sampling is performed on $\mathrm{y}(\mathrm{t})$ to get $y_{F}(t)=\sum_{-\infty}^{\infty} y(n T) \delta(t-n T)$.
Specify the range of values of T so that $y(t)$ may be recovered from $y_{p}(t)$.

Solution 2

By the Convolution Theorem,
$Y(\omega)=X_{1}(\omega) X_{2}(\omega)$
$Y(\omega)=0$ for $|\omega|>1000 \pi$
Thus from the Sampling Theorem, the sampling rate must exceed $2 * \frac{1000 \pi}{2 \pi}=1000$.
Thus T must be less than 10^{-3}, i.e: 1 millisecond.

Problem 3

In the figure below, we have a sampler, followed by an ideal low pass filter, for reconstruction of $x(t)$ from its samples $x_{p}(t)$. From the sampling theorem, we know that if $\omega_{s}=\frac{2 \pi}{T}$ is greater than twice the highest frequency present in $x(t)$ and $\omega_{c}=\frac{\omega_{s}}{2}$, then the reconstructed signal will exactly equal $x(t)$. If this condition on the bandwidth of $x(t)$ is violated, then $x_{y}(t)$ will not equal $x(t)$. We seek to show in this problem that if $\omega_{c}=\frac{\omega_{s}}{2}$, then for any choice of $\mathrm{T}, x_{y}(t)$ and $x(t)$ will always be equal at the sampling instants; that is, $x_{r}(k T)=x(k T), k=0, \pm 1, \pm 2, \ldots$

To obtain this result, consider the following equation which expresses $x_{y}(t)$ in terms of the samples of $x(t)$:
$x_{r}(t)=\sum_{n=-\infty}^{\infty} x(n T) T \frac{\omega_{c}}{\pi} \frac{\operatorname{Sin}\left[\omega_{c}(t-n T)\right]}{\omega_{c}(t-n T)}$
With $\omega_{c}=\frac{\omega_{s}}{2}$, this becomes
$x_{r}(t)=\sum_{n=-\infty}^{\infty} x(n T) \frac{\operatorname{Sin}\left[\frac{\pi}{T}(t-n T)\right]}{\frac{\pi}{T}(t-n T)}$
By considering the value of μ for which $\frac{[\sin (\mu)]}{\mu}=0$, show that, without any restrictions on $x(t), x_{y}(k T)=x(k T)$ for any integer value of k.

Solution 3

In order to show that $x_{r}^{(t)}$ and ${ }^{x(t)}$ are equal at the sampling instants, consider
$\lim _{t \rightarrow k T} x_{r}(t)=\lim _{t \rightarrow k T} \sum_{n=-\infty}^{\infty} x(n T) \frac{\operatorname{Sin}\left[\frac{\pi}{T}(t-n T)\right]}{\frac{\pi}{T}(t-n T)} \quad(k \in Z)$
$=\sum_{n=-\infty}^{\infty}\left(\lim _{t \rightarrow k T} x(n T) \frac{\operatorname{Sin}\left[\frac{\pi}{T}(t-n T)\right]}{\frac{\pi}{T}(t-n T)}\right)$ (assuming limit and summation are interchangeable)
$=\sum_{n=-\infty, n \neq k}^{\infty}\left(x(n T) \frac{\operatorname{Sin}\left[\frac{\pi}{T}(k T-n T)\right]}{\frac{\pi}{T}(k T-n T)}\right)+\lim _{t \rightarrow k T}\left(x(k T) \frac{\operatorname{Sin}\left[\frac{\pi}{T}(t-k T)\right]}{\frac{\pi}{T}(t-k T)}\right)$
$=\sum_{n=-\infty, n \neq k}^{\infty}\left(x(n T) \frac{\operatorname{Sin}[\pi(k-n)]}{\pi(k-n)}\right)+x(k T) \lim _{t \rightarrow k T}\left(\frac{\operatorname{Sin}\left[\frac{\pi}{T}(t-k T)\right]}{\frac{\pi}{T}(t-k T)}\right)$
$=0+x(k T) \times 1\left(\right.$ and $\left.\lim _{x \rightarrow 0} \frac{\operatorname{Sin} x}{x}=1\right)$
Thus, $\lim _{x \rightarrow k T} x_{r}(t)=x(k T)$
Assuming the continuity of $x_{r}(t)$ at $t=k T$,
$x_{r}(k T)=x(k T), \quad \forall k \in Z$

Problem 4

This problem deals with one procedure of bandpass sampling and reconstruction. This procedure, used when $x(t)$ is real, consists of multiplying $x(t)$ by a complex exponential and then sampling the product. The sampling system is shown in fig. (a) below. With $x(t)$ real and with $X\left(j \omega\right.$) nonzero only for $\omega_{1}<|\omega|<\omega_{2}$, the frequency is chosen to be $\omega_{0}=\left(\frac{1}{2}\right)\left(\omega_{2}+a_{1}\right)$, and the lowpass filter
$H_{1}(j w)$ has cutoff frequency $\left(\frac{1}{2}\right)\left(a_{2}+a_{1}\right)$
(a) For $X(j \omega)$ shown in fig. (b), sketch $X_{p}(j \omega)$.
(b) Determine the maximum sampling period T such that $x(t)$ is recoverable from $X_{p}(t)$.
(c) Determine a system to recover $x(t)$ from $x_{p}(t)$.

Fig. (a)

Fig. (b)

Solution 4
(a) Multiplication by the complex exponential $e^{-j \omega t}$ in the time domain is equivalent to shifting left the Fourier transform by an amount ' ω ' in the frequency domain. Therefore, the resultant transform looks as shown below:

After passing through the filter, the Fourier transform becomes:

Now sampling the signal amounts to making copies of the Fourier Transform, the center of each separated from the other by the sampling frequency in the frequency domain. Thus $X_{p}(j \omega)$ has the following form (assuming that the sampling frequency is large enough to avoid overlapping between the copies):

(b) $x(t)$ is recoverable from $x_{p}(t)$ only if the copies of the Fourier Transform obtained by sampling do not overlap with each other. For this to happen, the condition set down by the Shannon-Nyquist Sampling Theorem for a band-limited signal has to be satisfied, i.e. the sampling frequency should be greater than twice the bandwidth of the original signal. Mathematically,
$\omega_{s}>2 \omega_{m}$
$\Longrightarrow \frac{2 \pi}{T}>2\left(\frac{\omega_{2}-\omega_{1}}{2}\right)$
$\Rightarrow T<\left(\frac{2 \pi}{a_{2}-a_{1}}\right)$
Hence, the maximum sampling period for $\boldsymbol{x}(\boldsymbol{t})$ to be recoverable from $\boldsymbol{x}_{p}(\boldsymbol{t})$ is $\left(\frac{2 \pi}{a_{2}-a_{1}}\right)$.
(c) The system to recover $x(t)$ from $x_{p}(t)$ is outlined below:

Problem 5

The procedure for interpolation or upsampling by an integer factor N can be thought of as the cascade of two operations. The first operation, involving system A , corresponds to inserting $\mathrm{N}-1$ zero-sequence values between each sequence value of $x[n]$, so that

$$
x_{p}[n]= \begin{cases}x_{d}\left[\frac{n}{N}\right], & n=0, \pm N, \pm 2 N, \ldots \\ 0, & \text { otherwise }\end{cases}
$$

For exact band-limited interpolation, $H\left(e^{j e}\right)$ is an ideal lowpass filter.
(a) Determine whether or not system A is linear.
(b) Determine whether or not system A is time variant.
(c) For $X_{d}\left(e^{j \omega}\right)$ as sketched in the figure and with $\mathrm{N}=3$, sketch $X_{p}\left(e^{j \omega}\right)$.
(d) For $\mathrm{N}=3, X_{d}\left(e^{j \omega}\right)$ as in the figure, and $H\left(e^{j \omega}\right)$ appropriately chosen for exact band-limited interpolation, sketch $X\left(e^{j e}\right)$.

Solution 5

(a) Let $x_{1}[n]$ and $x_{2}[n]$ be two inputs with corresponding outputs $y_{1}[n]$ and $y_{2}[n]$ respectively. Now, suppose the new input to this system is $\alpha x_{1}[n]+\beta x_{2}[n]$. Then, the corresponding output is given by, $y[n]=\alpha x_{1}\left[\frac{n}{N}\right]+\beta x_{2}\left[\frac{n}{N}\right]$ if $n=0, \pm N, \pm 2 N, \ldots \ldots$ and 0 otherwise. From this it is clear that $y[n]=\alpha y_{1}[n]+\beta y_{2}[n]$ and hence the system is linear.
(b) The system A is not time invariant. We can see this from the following example. Let $x[n]=1$, for $n=0,1$ and $x[n]=0$ otherwise. Also assume that $\mathrm{N}=2$. Thus, the output corresponding to $\mathrm{x}[\mathrm{n}]$ will be $y[n]=1$ if $\mathrm{n}=0,2$ and $y[n]=0$ otherwise. Now, let $x_{1}[n]=2[n-1]=1$ if $n=1,2$ and 0 otherwise. The corresponding output is $y_{1}[n]=1$ if $n=2,4$ and y $1[n]=0$ otherwise. Thus, $y_{1}[n]=y[n-2] \neq y[n-1]$ and hence this shows that the system is not time invariant.
(c) Refer to Fig. 1 and Fig. 2

Figure 1: Spectrum given in the problem.

Figure 2: Spectrum of the interpolated signal.
(d) Refer to Fig. 3.

Figure 3: Spectrum of the upsampled signal.

Problem 6

Shown in the figures is a system in which the sampling signal is an impulse train with alternating sign. The Fourier Transform of the input signal is as indicated in the figures:
(i) For $\Delta<\pi /\left(2 \omega_{M}\right)$, sketch the Fourier transform of $x_{p}(t)$ and $y(t)$.
(ii) For $\Delta<\pi /\left(2 \omega_{M}\right)$, determine a system that will recover $x(t)$ from $x_{p}(t)$.
(iii) For $\Delta<\pi /\left(2 \omega_{M}\right)$, determine a system that will recover $x(t)$ from $y(t)$.
(iv) What is the maximum value of Δ in relation to ω_{M} for which $x(t)$ can be recovered from either $\boldsymbol{x}_{p}(t)$ or $\boldsymbol{y}(t)$?

Fig (a)

Fig (b)

Fig (c)

Fig (d)

Solution 6

(a) As $x_{p}(t)=x(t) p(t)$, by dual of convolution theorem we have $X_{p}(j \omega)=X(j \omega) P(j \omega)$. So, we first find the Fourier Transform of $p(t)$ as follows:

The Fourier Transform of a periodic function is an impulse train at intervals of $\omega=2 \pi / 2 \Delta=\pi / \Delta$, each impulse being of magnitude:

$$
\begin{aligned}
P(j \omega)_{k} & =2 \pi / 2 \Delta \int_{(2 \Delta)} p(t) \exp \left(-j k a_{0} t\right) d t \\
& =\pi / \Delta(1-\operatorname{Cos}(\pi k))
\end{aligned}
$$

Hence, the Fourier Transform of $X_{p}(j \infty)$ is as shown in figure (a). I n the frequency domain, the output signal Y can be found by multiplying the input with the frequency response. Hence $Y(j a)$ is as shown below in the figure (b).

Figure (a)

Figure (b)
(b) To recover $x(t)$ from $\boldsymbol{X}_{p}(t)$, we do the following two things:

1) Modulate the signal by

$$
\operatorname{Cos}((2 \pi / \Delta) t)
$$

2) Apply a low pass filter of bandwidth $\pi / 2 \Delta$.
(c) To recover $x(t)$ from $y(t)$, we do the following two things:
3) Modulate the signal by $2 \operatorname{Cos}((2 \pi / \Delta) t)$.
4) Apply a low pass filter of bandwidth $\pi / 2 \Delta$.
(d) Maximum value for recoverability is π / ω_{M} as can be seen from the graphs.

Problem 7

A signal $x(t)$ with Fourier transform $X(j \nexists)$ undergoes impulse -train sampling to generate
$x_{p}(t)=\sum_{n=-\infty}^{\infty} x(n T) \delta(t-n T)$,
where $T=10^{-4}$.
For each of the following set of constraints on $x(t)$ and/or $X(j \omega i)$, does the sampling theorem guarantee that $x(t)$ can be recovered exactly from $x_{\gamma}(t)$?
(a) $X(j a)=0$ for $|w|>5000 \pi$
(b) $X(j \omega)=0$ for $|\omega|>15000 \pi$
(c) $\Re e\{X(j w)\}=0$ for $|w|>5000 \pi$
(d) $x(t)$ real and $X(j \omega)=0$ for $\omega>5000 \pi$
(e) $x(t)$ real and $X(j a)=0$ for $a<-15000 \pi$
(f) $X(j a) * X(j \omega)=0$ for $|\omega|>15000 \pi$
(g) $|X(j a)|=0$ for $a>5000 \pi$

Solution 7

From Sampling Theorem we know that if $x(t)$ be a band-limited signal with
$X(j a)=0$ for $|w|>w_{M}$, then $x(t)$ is uniquely determined by its samples
$\mathrm{x}(\mathrm{nT}), \mathrm{n}=0, \pm 1, \pm 2, \pm 3 \ldots$, if
$m_{s}>2 a_{k}$,
where
$w_{s}=\frac{2 \pi}{T}$
Now,

$$
\begin{aligned}
& T=10^{-4} \\
& \omega_{s}=20000 \pi
\end{aligned}
$$

(a) $X(j w)=0$ for $|w|>5000 \pi$
$2 \omega_{M}=10000 \pi$
Here, obviously, $w_{s}<2 \omega_{M}$.
Hence $x(t)$ can be recovered exactly from $x_{y}(t)$.
(b) $X(j w)=0$ for $|w|>15000 \pi$
$2 \omega_{M}=30000 \pi$
Here, obviously $a_{s}<2 a_{M}$,
Hence $x(t)$ can be recovered exactly from $x_{y}(t)$.
(c) $\wp \mathfrak{\Re} e\{X(j a)\}=0$ for $|\infty|>5000 \pi$

Real part of $X(j \omega)=0$, but we can't say anything particular about imaginary part of the $X(j \omega)$, thus not necessary that $X(j \infty)=0$ for this particular range.

Hence $x(t)$ cannot be recovered exactly from $x_{\mu}(t)$.
(d) $x(t)$ real and $X(j a)=0$ for $a>5000 \pi$

As $x(t)$ is real we have $X(j w)=\overline{X(-j w)}$
Taking mod on both sides
$X(j w)=\overline{X(-j w)}=0$ for $\omega>5000 \pi$
$\Rightarrow|\overline{X(-j w)}|=|X(-j w)|=0$ for $\omega>5000 \pi$
$\Rightarrow X(-j a)=0$ for $a>5000 \pi$
$\Rightarrow X(j a)=0$ for $\omega<-5000 \pi$
So, we get
$X(j w)=0$ for $|w|>5000 \pi$
Here, obviously $a_{s}>2 a_{m a}$,
Hence $x(\mathrm{t})$ can be recovered exactly from $x_{p}(t)$.
(e) $x(t)$ real and $X(j a)=0$ for $a<-15000 \pi$

Proceeding as above we get
$X(j a)=0$ for $|m|>15000 \pi$
Here, obviously $\omega_{s}<2 \omega_{M}$,
Hence $x(\mathrm{t})$ cannot be recovered exactly from $x_{y}(t)$.
(f) $X(j a) * X(j w)=0$ for $|w|>15000 \pi$

When we convolve two functions with domain a_{1} to a_{2} and a_{3} to a_{4} then the domain of their convolution function varies
from $a_{1}+a_{3}$ to $a_{2}+a_{4}$.
Here, $a_{1}=a_{3}$ and $a_{2}=a_{4}$
$2 \omega_{1}=15000$
$\Rightarrow a_{1}=7500$
Therefore,
$X(j a)=0$ for $|w|>7500 \pi$
Here, obviously $\omega_{s}>2 a_{M A}$,
Hence $x(t)$ can be recovered exactly from $x_{y}(t)$.
(g) $|X(j a)|=0$ for $a>5000 \pi$

We cannot say anything about $X(j a)$ for $a<-5000 \pi$,
Hence $\mathrm{x}(\mathrm{t})$ cannot be recovered exactly from $x_{p}(t)$.

Problem 8

Shown in the figures below is a system in which the input signal is multiplied by a periodic square wave. The period of $s(t)$ is T. The input signal is band limited with
$|X(j a)|=0$ for $|a| \geq a a_{m}$
(a) For $\Delta=T / 3$, determine, in terms of $a_{M M}$, the maximum value of T for which there is no aliasing among the replicas of $X(j \omega)$ in $W(j m)$.
(b) For $\Delta=T / 4$, determine, in terms of ω_{M}, the maximum value of T for which there is no aliasing among the replicas of $X(j \omega)$ in $W(j a)$.

Figure (a)

Figure (b)

Solution 8

(a) We know that
$x(t) \cdot s(t) \rightarrow(F T) \rightarrow X(j a) * S(j a)$
$s(t)$ is a periodic square wave of period T.

With $\Delta=T / 3$ as shown in the figure.

Figure (a)

We calculate $\mathrm{S}(j a)$ as follows: (FT of a periodic signal)
$S(j a)=\sum a_{k} \delta\left(w-a_{b}\right)$
where,
$a_{k}=\frac{1}{T} \int_{(T)} s(t) \exp \left(-j k a_{\mathrm{b}} t\right) d t$
Considering any one period T_{T}, (say from 0 to $T_{\text {, }}$) and
Substituting $a_{0}=2 \pi / T$
$a_{k}=\frac{1}{(j 2 \pi k)}\{1-2 \exp (-j 4 \pi k / 3)+\exp (-j 2 \pi k)\}$
$=\frac{-1}{(j \pi k)}\{\exp (-j 4 \pi k / 3)\}$
which can never be 0 .
Thus, $S(j a)$ is an impulse train situated at intervals of a_{0}.
And ω_{M} has a maximum value of $1 / 2(2 \pi / T)$.
$T \leq \pi / \omega_{M}$ (Maximum value of T without aliasing).
(b) We know that
$x(t) . s(t) \rightarrow(F T) \rightarrow X(j \nexists) * S(j \nexists)$
$s(t)$ is a periodic square wave of period T.
With $\Delta=T / 4$ as shown in the figure.

Figure (b)
We calculate $\mathrm{S}(j a)$ as follows: (FT of a periodic signal)
$S(j a)=\sum a_{k} \delta\left(a-a_{b}\right)$
where
$a_{k}=\frac{1}{T} \int_{(T)} s(t) \exp \left(-j k a_{q_{0}} t\right) d t$
Considering any one period T, (say from 0 to T) and
Substituting $\omega_{0}=2 \pi / T$
$a_{k}=\frac{1}{(j 2 \pi k)}\{1-2 \exp (-j \pi k)+\exp (-j 2 \pi k)\}$
$=0^{\text {for }} k=2 m^{\text {(i.e. } \mathrm{k}}$ is even)
Thus, $\mathrm{S}(j a)$ is an impulse train situated at intervals of $2 a_{0}$.
And ω_{M} has a maximum value of $1 / 2(2 * 2 \pi / T)$.
$T \leq 2 \pi / \omega_{M}$ (Maximum value of T without aliasing).

Problem 9 :

Figure I shows the overall system for filtering a continuous-time signal using a discrete time filter. If $\mathrm{X}_{\mathrm{c}}(\mathrm{jw})$ and $\mathrm{H}(\exp (\mathrm{jw}))$ are as shown in Figure II, with 1/T=20kHz, sketch $X_{p}(j w), X(\exp (j w)), Y(\exp (j w)), Y_{p}(j w)$ and $Y_{c}(j w)$

Figure (I)

Figure (II)

Solution 9 :

Problem 10:

Shown in figure below is a system in which the input signal is multiplied by a periodic square wave. The period of $s(t)$ is T. The input signal is band limited with $|X(j w)|=0$ for $|w|>w_{m}$.
(a) For $\Delta=T / 3$ determine, in terms of w_{m}, the maximum value of T for which there is no aliasing among the replicas of $X(j w)$ in W(jw).
(b) For $\Delta=T / 4$ determine, in terms of w_{m}, the maximum value of T for which there is no aliasing among the replicas of $X(j w)$ in $W($ jw).

s (t)

