Module 2 : Signals in Frequency Domain Problem Set 2

Problem 1

Let $x(t)$ be a periodic signal with fundamental period T and Fourier series coefficients a_{k}. Derive the Fourier series coefficients of each of the following signals in terms of a_{k} :
(a) $x\left(t-t_{0}\right)+x\left(t+t_{0}\right)$
(b) $\varepsilon_{v}\{x(t)\}$
(c) $\Re e\{x(t)\}$
(d) $\frac{d^{2} x(t)}{d t^{2}}$
(e) $x(3 t-1)$ [for this part, first determine the period of $x(3 t-1)$]

Solution 1

(a) $x(t)=\sum_{k=-\infty}^{\infty} a_{h} e^{j k, \omega_{0} t}$
where $a_{0}=\frac{2 \pi}{t}$. Thus, we have

$$
\begin{gathered}
x\left(t-t_{0}\right)+x\left(t+t_{0}\right)=\sum_{k=-\infty}^{\infty} a_{k} e^{j k \omega_{0}\left(t-t_{0}\right)}+\sum_{k=-\infty}^{\infty} a_{k} e^{j k \omega_{0}\left(t+t_{0}\right)} \\
\sum_{k=-\infty}^{\infty} a_{k} e^{j k a_{0} t} e^{-j k a_{0} t_{0}}+\sum_{k=-\infty}^{\infty} a_{k} e^{j k a_{0} t} e^{j k a_{0} t_{0}}
\end{gathered}
$$

$\sum_{k=-\infty}^{\infty} a_{k} e^{j k \omega_{0} t}\left[e^{-j k \omega_{0} t_{0}}+e^{j k \omega_{0} t_{0}}\right]$
$\sum_{k=-\infty}^{\infty} 2 a_{k} \cos \left(k \omega_{0} t_{0}\right) e^{i k \omega_{0} t}$

Therefore the new Fourier coefficients are

$$
\hat{a}_{k}=2 a_{k} \cos \left(k \omega_{0} t_{0}\right)
$$

(b) $\varepsilon_{v}\{x(t)\} \quad=\quad \frac{x(t)+x(-t)}{2}$

$$
\begin{aligned}
& =\frac{1}{2}\left[\sum_{k=-\infty}^{\infty} a_{k} e^{j k a_{0} t}+\sum_{k=-\infty}^{\infty} a_{k} e^{-j k a_{0} t}\right] \\
& =\frac{1}{2}\left[\sum_{k=-\infty}^{\infty} a_{k} e^{j k a_{0} t}+\sum_{k=-\infty}^{\infty} a_{-k} e^{j k a_{0} t}\right] \\
& =\sum_{k=-\infty}^{\infty}\left[\frac{a_{k}+a_{-k}}{2}\right] e^{j k \omega_{0} t}
\end{aligned}
$$

Hence the Fourier series coefficients of $\boldsymbol{\varepsilon}_{v}\{x(t)\}$ are given by

$$
\hat{a}_{k}=\left[\frac{a_{k}+a_{-k}}{2}\right]
$$

(c) $\quad \mathfrak{P}\left\{e\{x(t)\}=\frac{x(t)+x^{*}(t)}{2}\right.$

$$
\begin{aligned}
= & \frac{1}{2}\left[\sum_{k=-\infty}^{\infty} a_{k} e^{j k \omega_{0} t}+\sum_{k=-\infty}^{\infty} a_{k}^{*} e^{-j k \omega_{0} t}\right] \\
= & \frac{1}{2}\left[\sum_{k=-\infty}^{\infty} a_{k} e^{j k \omega_{0} t}+\sum_{k=-\infty}^{\infty} a^{*} a_{k}^{*} e^{j k \omega_{0} t}\right] \\
= & \sum_{k=-\infty}^{\infty}\left[\frac{a_{k}+a^{*}-k}{2}\right] e^{j k \omega_{0} t}
\end{aligned}
$$

Hence the Fourier series coefficients of $\mathfrak{T} e\{x(t)\}$ are given by
$\hat{a}_{k}=\left[\frac{a_{k}+a_{-k}^{*}}{2}\right]$
(d) $\frac{d^{2} x(t)}{d t^{2}}=\sum_{k=-\infty}^{\infty} \frac{d^{2}\left(a_{k} e^{j k \omega_{0} t}\right)}{d t^{2}}$

$$
\begin{aligned}
& =\sum_{k=-\infty}^{\infty} a_{k}\left(j k \omega_{0}\right)^{2} e^{j k \omega_{0} t} \\
& =\sum_{k=-\infty}^{\infty}-a_{k} k^{2} \omega_{0}^{2} e^{j k \omega_{0} t}
\end{aligned}
$$

Hence the Fourier series coefficients of $\frac{d^{2} x(t)}{d t^{2}}$ are given by
${\hat{a_{k}}}_{k}=-a_{k} k^{2} a_{0}^{2}$
(e) $x(3 t-1)=\sum_{k=-\infty}^{\infty} a_{k} e^{j k \omega_{0}(3 t-1)}$

$$
\begin{align*}
& =\sum_{k=-\infty}^{\infty} a_{k} e^{j 3 k \omega_{0} t} e^{-j k \omega_{0}} \\
& =\sum_{k=-\infty}^{\infty} a_{k} e^{-j k \omega_{0}} e^{j k\left(3 \omega_{0}\right) t} \tag{1}
\end{align*}
$$

Since $x(t)$ has fundamental period $T, x(3 t-1)$ has fundamental period $\frac{T}{3}$. Therefore, from (1) the Fourier coefficients of $x(3 t-1)$ are

$$
\hat{a}_{k}=a_{k} e^{-j k a_{0}}
$$

Problem 2

Suppose we are given the following information about a signal $x(t)$:

1. $x(t)$ is a real signal .
2. $x(t)$ is periodic with period $\mathrm{T}=6$ and has Fourier coefficients a_{k}.
3. $a_{k}=0$ for $\mathrm{k}=0$ and $\mathrm{k}>2$.
4. $x(t)=-x(t-3)$.
5. $\frac{1}{6} \int_{-3}^{3}|x(t)|^{2} d t=\frac{1}{2}$
6. ${ }^{a_{1}}$ is a positive real number .

Show that $x(t)=A \cos (B t+C)$, and determine the values of the constants A, B, and C.

Solution 2

Since $x(t)$ is a real signal, $a_{k}=a_{-k}^{*}$. But from the given hypothesis, $a_{k}=0$ for $\mathrm{k}>2$. This implies that $a_{-k}=a_{k}^{*}=0$ for $\mathrm{k}>2$.
Also, it is given that $a_{0}=0$. Therefore the only non-zero Fourier coefficients are $a_{1}{ }^{\prime} a_{-1}=a_{1}{ }^{*}, a_{2}{ }^{\text {and }} a_{-2}=a_{2}{ }^{*}$. It is also given that a_{1} is a positive real number. Therefore $a_{-1}=a_{1}$. Thus we have,

$$
\begin{aligned}
x(t) & =a_{1}\left[e^{j \frac{2 \pi}{T} t}+e^{-j \frac{2 \pi}{T} t}\right]+a_{2} e^{j \frac{4 \pi}{T} t}+a_{2}^{*} e^{-j \frac{4 \pi}{T} t} \\
& =2 a_{1} \cos \left(\frac{2 \pi}{T} t\right)+a_{2} e^{j \frac{4 \pi}{T} t}+a_{2}^{*} e^{-j \frac{4 \pi}{T} t} \\
& =2 a_{1} \cos \left(\frac{\pi}{3} t\right)+a_{2} e^{j \frac{4 \pi}{T} t}+a_{2}^{*} e^{-j \frac{4 \pi}{T} t}
\end{aligned}
$$

Since $e^{j \frac{4 \pi}{T} t \text { and }} e^{-j \frac{4 \pi}{T} t \text { are both periodic with period 3, we have }}$

$$
x(t-3)=-2 a_{1} \cos \left(\frac{\pi}{3} t\right)+a_{2} e^{j \frac{4 \pi}{T} t}+a_{2}^{*} e^{-j \frac{4 \pi}{T} t}
$$

But, by given hypothesis we have $x(t)=-x(t-3)$, which implies that
$2\left[a_{2} e^{j \frac{4 \pi}{T} t}+a_{2} e^{-j \frac{4 \pi}{T} t}\right]=0$
Therefore we have,

$$
x(t)=2 a_{1} \cos \left(\frac{\pi}{3} t\right)
$$

Finally, it is given that

$$
\begin{aligned}
& \frac{1}{6} \int_{-3}^{3}|x(t)|^{2} d t=\frac{1}{2} \\
& \Rightarrow \frac{4}{6} \int_{-3}^{3} a_{4}^{2} \cos ^{2}\left(\frac{\pi}{3}\right) t d t=\frac{1}{2}
\end{aligned}
$$

$\Rightarrow a_{1}=\frac{1}{2}$
Therefore, $x(t)=\cos \left(\frac{\pi}{3} t\right)$ and the constants $\mathrm{A}=1, \mathrm{~B}=\frac{\pi}{3}$ and $\mathrm{C}=0$.

Problem 3

Consider the signal
$x_{0}(t)=\left\{\begin{array}{l}e^{-t}, 0 \leq t \leq 1 \\ 0, \text { elsewhere }\end{array}\right.$
Determine the Fourier transform of each of the signals shown in figure below. You should be able to do this by explicitly evaluating only the transform of $x_{0}(t)$ and then using properties of the Fourier transform.

(a)

(c)

(b)

(d)

Solution 3

$\mathrm{X}_{0}(j)=\int_{t=0}^{1} x(t) e^{-j \omega t} d t=\int_{t=0}^{1} e^{-t} e^{-j \omega t} d t=\int_{t=0}^{1} e^{-t(j \omega+1)} d t=\left.\frac{e^{-t(j \omega+1)}}{-(j \omega+1)}\right|_{0} ^{1}$

$$
=\frac{e^{-(j \omega+1)}-1}{-(j \omega+1)}
$$

(a) $\quad x_{1}(t)=x_{0}(t)+x_{0}(-t)$

$$
X_{1}(j)=X_{0}(j)+X_{0}(-j)=\frac{e^{-(j \omega+1)}-1}{-(j w+1)}+\frac{e^{(j \omega-1)}-1}{j \omega-1}
$$

(b) $\quad x_{2}(t)=x_{0}(t)-x_{0}(-t)$

$$
X_{2}(j)=X_{0}(j)-X_{0}(-j)=\frac{e^{-(j \omega+1)}-1}{-(j \omega+1)}-\frac{e^{(j \omega-1)}-1}{j \omega-1}
$$

(c) $\quad x_{3}(t)=x_{0}(t)+x_{0}(t+1)$

$$
X_{3}(j)=X_{0}(j)+X_{0}(j) e^{+j \omega}=\frac{e^{-(j \omega+1)}-1}{-(j \omega+1)}\left(1+e^{+j \omega}\right)
$$

(d) $\quad x_{4}(t)=t x_{0}(t)$

$$
X_{4}(j)=j \frac{d}{d \omega} X_{0}(j)=\frac{e^{-(j \omega+1)}}{-(j \omega+1)}+\frac{1-e^{-(j \omega+1)}}{(j \omega+1)^{2}}
$$

Problem 4

A causal stable LTI system S has the frequency response $H(j w)=\frac{j w+4}{6-w^{2}+5 j w}$

- Determine a differential equation relating the input $x(t)$ and output $y(t)$ of S.
- Determine the impulse response $\mathrm{h}(\mathrm{t})$ of S .
- What is the output of S when the input is $x(t)=e^{-4 t} u(t)-t e^{-4 t} u(t)$?

Solution 4

$$
H(j a)=\frac{j w+4}{6-m^{2}+5 j w}=\frac{Y(j w)}{X(j w)}
$$

(a) $\quad Y(j m)\left(6-m^{2}+5 j m\right)=X(j m)(j m+4)$

$$
6 y(t)+\frac{d^{2}}{d t^{2}} y(t)+5 \frac{d}{d t} y(t)=\frac{d}{d t} x(t)+4 x(t)
$$

(b) $\quad H(j w)=\frac{j w+4}{(2+j w)(3+j w)}=\frac{A}{(2+j w)}+\frac{B}{(3+j w)}$;

Multiply both sides by $(2+j a)$
and set $=2 j$ to get $A=2$
multiply both sides by $(3+j w)$ and set $=3 j$ to get $B=-1$

$$
\begin{aligned}
& H(j w)=\frac{2}{(2+j w)}-\frac{1}{(3+j w)} \\
& h(t)=F^{-1}\{H(j w)\}=\left(2 e^{-2 t}-e^{-3 t}\right) u(t)
\end{aligned}
$$

(c)

$$
\begin{aligned}
& Y(j w)=H(j w) X(j w)=\left(\frac{j w+4}{6-w^{2}+5 j w}\right)\left(\frac{1}{(4+j w)}-\frac{1}{(4+j w)^{2}}\right) \\
&=\frac{(4+j w)(3+j w)}{(2+j w)(3+j w)(4+j w)^{2}}=\frac{1}{(2+j w)(4+j w)}=\frac{A}{(2+j w)}+\frac{B}{(4+j w)}
\end{aligned}
$$

multiply both sides by $(2+j \omega)^{2}$ and set $=2 \mathrm{j}$ to get $\mathrm{A}=1 / 2$
multiply both sides by $(4+j \omega)$ and set $=-4 j$ to get $B=-1 / 2$

$$
\begin{aligned}
& Y(j \omega)=\frac{1 / 2}{(2+j w)}-\frac{1 / 2}{(4+j w)} \\
& y(t)=F^{-1}\{Y(j w)\}=\left(0.5 e^{-2 t}-0.5 e^{-4 t}\right) u(t)
\end{aligned}
$$

Problem 5

The output $y(t)$ of a causal LTI system is related to the input $x(t)$ by the equation
$\frac{d y(t)}{d t}+10 y(t)=\int_{-\infty}^{+\infty} x(\tau) z(t-\tau) d \tau-x(t)$
where $z(t)=e^{-t} u(t)+3 \delta(t)$.

- Find the frequency response $H(j \omega)=Y(j \varpi) / X(j \omega)$ of this system.
- Determine the impulse response of the system.

Solution 5

$$
\frac{d y(t)}{d t}+10 y(t)=\int_{-\infty}^{\infty} x(\tau) z(t-\tau) d \tau-x(t)
$$

(a) $\quad Y(j w)(10+j w)=X(j w)(Z(j a)-1)$
$Z(j \omega)=\frac{1}{1+j \omega}+3=\frac{4+3 j w}{1+j w}$

$$
H(j w)=\frac{Y(j w)}{X(j w)}=\frac{Z(j w)-1}{10+j w}=\frac{3+2 j w}{(10+j w)(1+j w)}
$$

(b) $\quad H(j w)=\frac{3+2 j w}{(10+j w)(1+j w)}=\frac{A}{(10+j w)}+\frac{B}{(1+j w)}$

Multiply both sides by $(10+j w)$ and set $=10 j$ to get $A=17 / 9$
Multiply both sides by $(1+j w)$ and set $=j$ to get $\mathrm{B}=1 / 9$

$$
\begin{aligned}
& H(j w)=\frac{17 / 9}{(10+j w)}+\frac{1 / 9}{(1+j w)} \\
& h(t)=F^{-1}\{H(j w)\}=\left(\frac{17}{9} e^{-10 t}+\frac{1}{9} e^{-t}\right) u(t)
\end{aligned}
$$

Problem 6

Consider the signal $x(t)$ in the figure.
(a) Find the Fourier transform $X(j w)$ of $x(t)$.
(b) Sketch the signal
$\tilde{x}(t)=x(t) * \sum_{k=-\infty}^{\infty} \delta(t-4 k)$
(c) Find another signal $g(t)$ such that $g(t)$ is not the same as $x(t)$ and
$\tilde{x}(t)=g(t) * \sum_{k=-\infty}^{\infty} \delta(t-4 k)$
(d) Argue that, although $G(j a)$ is different from $X(j \omega), G\left(j \frac{\pi k}{2}\right)=X\left(j \frac{\pi k}{2}\right)$ for all integers k. You should not explicitly evaluate $G(j m)$ to answer this question.

Solution 6

(a) Consider the signal $y(t)$ shown below.

Fig. (a)
Now consider convolution of $y(t)$ with itself. Let the resultant signal be $z(t)$.
Then, $z(t)=y(t) * y(t)$.

$$
=\int_{-\infty}^{\infty} y(k) y(t-k) d k
$$

Now, consider $y(k)$ and $y(t-k)$.

Fig (b)
$X\left(j \frac{\pi k}{2}\right) e^{-j 2 m \pi} \quad m \in \mathbb{Z} \quad$ and $\quad m=k n$

Fig (c)

So, when $t+A<-A, \quad \Rightarrow t<-2 A$.
$z(t)=0$ as there is no overlap between $y(k)$ and $y(t-k)$.

When $-A \leq t+A<A, \quad \Rightarrow-2 A \leq t<0$.
Then, $z(t)=\int_{-A}^{t+A} y(k) y(t-k) d k$.
Here, $y(k)=1$ and $y(t-k)=1$.

So, $z(t)=\int_{-A}^{t+A} 1 d k$.

$$
=[k]_{-A}^{t+A}=t+2 A
$$

When $t-A>A \quad \Rightarrow t>2 A$.
Then, there is no overlap between $y(k)$ and $y(t-k)$.

So, the signal $z(t)$ is

Fig. (d)

Now compare $z(t)$ with the given signal $x(t)$. Here $x(t)$ is

Fig. (e)

By comparing, we get $A=\frac{1}{2}$.

So, $x(t)$ can be thought of as a signal which is a convolution of the signal $v(t)$ with itself, where $\mathcal{v}(t)$ is

Fig. (f)

This implies $x(t)=v(t) * v(t)$.

By Convolution Theorem, the Fourier Transform of $x(t)$ is square of the Fourier Transform of $v(t)$, i.e. $\log [X(j w)]=2(\log [V(j w)])$

Now, consider $v(t)$. Its Fourier Transform $V(j w)$ is

$$
\begin{aligned}
V(j \omega) & =\int_{-\infty}^{\infty} v(t) e^{-j \omega t} d t \\
& =\int_{-\frac{1}{2}}^{\frac{1}{2}} e^{-j \omega t} d t \\
& =2 \frac{\operatorname{Sin}\left(\frac{\omega}{2}\right)}{\omega}
\end{aligned}
$$

So, $X(j w)=[V(j w)]^{2}$
$X(j \omega)=4 \frac{\operatorname{Sin}^{2}\left(\frac{a}{2}\right)}{\omega^{2}}$.
(b) $\tilde{x}(t)=x(t) * \sum_{k=-\infty}^{\infty} \delta(t-4 k)$

Now, consider a signal $y_{k}(t)$, where
$y_{k}(t)=x(t) * \delta(t-4 k)$
$y_{k}(t)=\int_{-\infty}^{\infty} x(\lambda) \delta(t-\lambda-4 k) d \lambda$
$=\int_{-\infty}^{\infty} x(\lambda) \delta((t-4 k)-\lambda) d \lambda$
$y_{k}(t)=x(t-4 k)$ as $\int_{-\infty}^{\infty} x(\lambda) \delta(t-\lambda) d \lambda=x(t)$.

So, $y_{k}(t)$ is the shifted version of $x(t)$ by 4 k along the t axis which is shown as

Fig. (g)

Now, $\tilde{x}(t)=\sum_{k=-\infty}^{\infty} y_{k}(t)$
So, $\tilde{x}(t)$ is

Fig. (h)
(c) Any signal which is the shifted version of $x(t)$ by 4 k on the t axis can be taken as $g(t)$, which satisfies $g(t)=g(t) * \sum_{k=-\infty}^{\infty} \delta(t-4 k)$ because by the last part we can say that when we convolve $g(t)$ with $\sum_{k=-\infty}^{\infty} \delta(t-4 k)$, it will result in $\tilde{x}(t)$.

In this case, $g(t)=x(t-4 k)$, where $k \in \mathbb{Z}$.
(d) By part (c),
$g(t)=x(t-4 n)$, where $n \in \mathbb{Z}$.
$\Rightarrow G(j \omega)=X(j \omega) e^{-j \omega 4 n}$

Now, put $a p=\frac{\pi k}{2}$.
$\Rightarrow G\left(j \frac{\pi k}{2}\right)=X\left(j \frac{\pi k}{2}\right) e^{-j \frac{\pi k}{2} 4 n}$
$X\left(j \frac{\pi k}{2}\right) e^{-j 2 m \pi} \quad m \in \mathbb{Z} \quad$ and $\quad m=k n$
$G\left(j \frac{\pi k}{2}\right)=X\left(j \frac{\pi k}{2}\right)$ as $e^{-j 2 m \pi}=1$

Problem 7

Consider an LTI system whose response to the input
$x(t)=\left[e^{-t}+e^{-3 t}\right] u(t)$
is $y(t)=\left[2 e^{-t}-2 e^{-4 t}\right] u(t)$
(a) Find the frequency response of this system.
(b) Determine the system's impulse response.

Solution 7

(a) Given:
$x(t)=\left[e^{-t}+e^{-3 t}\right] u(t)$
$y(t)=\left[2 e^{-t}-2 e^{-4 t}\right] u(t)$
The Fourier transform of $e^{-a t} \boldsymbol{u}(t)$ [where a>0] is $\frac{1}{a+j a}$.
So Fourier transform of $x(t)$ is
$X(j \omega)=\frac{1}{1+j w}+\frac{1}{3+j \omega}$
Similarly, the Fourier transform of output $y[t]$ is
$Y(j \omega)=\frac{2}{1+j \omega}-\frac{2}{4+j \omega}$
Let the frequency response of the given LTI system be $H(j w)$.
So, by the convolution theorem,
As $y(t)=x(t) * h(t)$,
$\Rightarrow Y(j \omega)=X(j \omega) H(j \omega)$
$\Rightarrow \frac{2}{1+j \omega}-\frac{2}{4+j \omega}=\left(\frac{1}{1+j \omega}+\frac{1}{3+j \omega}\right) H(j \omega)$
By solving this, we get
$H(j \omega)=3\left[\frac{3+j \omega}{(4+j \omega)(2+j \omega)}\right]$
$H(j \omega)=\frac{3}{2(4+j \omega)}+\frac{3}{2(2+j \omega)}$
(b) By taking Inverse Fourier Transform of $H(j w)$, we get
$h(t)=\frac{3}{2}\left(e^{-4 t}+e^{-2 t}\right) u(t)$

Problem 8

Determine the Fourier series representations for the following signals:
(1) Each $x(t)$ illustrated in the figures (a)-(f)

(c)

(d)

(2) $x(t)$ periodic with period 2 and $x(t)=e^{-t}$ for $-1<t<1$.
(3) $x(t)$ periodic with period 4 and

$$
x(t)= \begin{cases}\sin \pi t, & 0 \leq t \leq 2 \\ 0, & 2<t \leq 4\end{cases}
$$

Solution 8

(1)
(a) It is periodic with period 2 . So, consider segment between $t \in[-1,1]$.

Let
$x(t)=\sum_{k=-\infty}^{\infty} C_{k} e^{j 2 \pi k t / T}$
be the Fourier expansion, where:
$C_{k}=\frac{1}{T} \int_{(T)} x(t) e^{-j 2 \pi k / T} d t$
$\Rightarrow C_{0}=\frac{1}{2} \int_{(T)} x(t) d t=0$
For $k \neq 0$,
$C_{k}=\frac{1}{2} \int_{(\lambda)} x(t) e^{-j 2 \pi h t / T} d t$
But, $x(t)=t{ }_{\text {in }}[-1,1]$
$\Rightarrow C_{k}=\frac{1}{2} \int_{(T)} t e^{-j 2 \pi k / T} d t$
$=\frac{1}{2}\left[t \frac{e^{-j \pi h t}}{-j \pi k}\right]_{-1}^{1}-\frac{1}{2}\left[\frac{e^{-j \pi h t}}{(-j \pi k)^{2}}\right]_{-1}^{1}$
$=\frac{(-1)^{k+1}}{j \pi k}$
Substituting in $x(t)$

$$
x(t)=\sum_{k=-\infty}^{\infty} C_{k} e^{j 2 \pi k t / T}
$$

(b) It is periodic with period 6 . So, consider segment between $t \in[-3,3]$.

The function in this interval is:

$$
\begin{array}{rlrl}
x(t) & =0 & & -3 \leq t \leq-2 \\
& =t+2 & & -2 \leq t \leq-1 \\
& =1 & -1 \leq t \leq 1 \\
& =-t+2 & & 1 \leq t \leq 2 \\
& =0 & & 2 \leq t \leq 3
\end{array}
$$

Let

$$
x(t)=\sum_{k=-\infty}^{\infty} C_{k} e^{j 2 \pi k i T}
$$

be the Fourier expansion, where:
$C_{k}=\frac{1}{T} \int_{(T)} x(t) e^{-j 2 \pi k t T} d t$
$\Rightarrow C_{0}=\frac{1}{6} \int_{(T)} x(t) d t=1 / 2$
For $k \neq 0$,
$C_{k}=\frac{1}{6} \int_{-3}^{3} x(t) e^{-j 2 \pi i t / 6} d t$
$\Rightarrow C_{k}=\frac{1}{6}\left[\int_{-2}^{-1}(t+2) e^{-j \pi k t / 3} d t+\int_{-1}^{1} e^{-j \pi k t / 3} d t+\int_{1}^{2}(2-t) e^{-j \pi k t / 3} d t\right]$
$=\frac{1}{6}\left[\frac{18}{\pi^{2} k^{2}}\left\{\operatorname{Cos}(\pi k / 3)-\operatorname{Cos}(2 \pi k / 3)-\frac{\pi k}{3} \operatorname{Sin}(\pi k / 3)\right\}+\frac{6}{\pi k} \sin (\pi k / 3)\right]$
$=\frac{3}{\pi^{2} k^{2}}[\operatorname{Cos}(\pi k / 3)-\operatorname{Cos}(2 \pi k / 3)]$

Substituting in $x(t)$
$x(t)=\sum_{k=-\infty}^{\infty} C_{k} e^{j 2 \pi k t / T}$
(c) It is periodic with period 3 , so take the segment $t \in[-2,1]$

The function in the interval is:
$x(t)=t+2$
$-2 \leq t \leq 0$
$=2-2 t$
$0 \leq t \leq 1$

Let
$x(t)=\sum_{k=-\infty}^{\infty} C_{k} e^{j 2 \pi k t / T}$
be the Fourier expansion, where:
$C_{k}=\frac{1}{T} \int_{(T)} x(t) e^{-j 2 \pi i t / T} d t$
$\Rightarrow C_{0}=\frac{1}{3} \int_{-2}^{1} x(t) d t=3$
For $k \neq 0$,
$C_{k}=\frac{1}{3}\left[\int_{-2}^{0}(t+2) e^{-j 2 \pi k t / 3} d t+\int_{0}^{1}(2-2 t) e^{-j 2 \pi k t / 3} d t\right]$
$=\frac{1}{3}\left[\frac{3 j}{\pi k}+\frac{9\left(1+e^{j 4 \pi k / 3}\right)}{4 \pi^{2} k^{2}}-\frac{3 j}{2 \pi k}+\frac{9}{2 \pi^{2} k^{2}}\left(1-e^{-j 2 \pi k / 3}\right)\right]$
$=\frac{j}{2 \pi k}+\frac{9}{4 \pi^{2} k^{2}}\left(3-2 e^{-j 2 \pi k / 3}+e^{j 4 \pi k / 3}\right)$

Substituting in $x(t)$
$x(t)=\sum_{k=-\infty}^{\infty} C_{k} e^{j 2 \pi k t / T}$
(d) It is periodic with period 2. So take segment $t \in\left[\frac{-1}{2}, \frac{3}{2}\right]$

Here,
$x(t)=\delta(t)-2 \delta(t-1)$
Let
$x(t)=\sum_{k=-\infty}^{\infty} C_{k} e^{j 2 \pi h / T}$
be the Fourier expansion, where:
$C_{k}=\frac{1}{T} \int_{(T)} x(t) e^{-j 2 \pi k t / T} d t$
$\Rightarrow C_{0}=\frac{1}{2} \int_{-1 / 2}^{3 / 2}(\delta(t)-2 \delta(t-1)) d t$
$=-\frac{1}{2}$
For $k \neq 0$
$C_{k}=\frac{1}{2} \int_{-1 / 2}^{3 / 2}(\delta(t)-2 \delta(t-1)) e^{-j 2 \pi k t / 2} d t$
$=\frac{1-2 e^{-j \pi k}}{2}$
Substituting in $x(t)$
$x(t)=\sum_{k=-\infty}^{\infty} C_{k} e^{j 2 \pi k t / T}$
(e) It is periodic with period 6 . So, take the segment $t \in[-3,3]$

Here $x(t)$ will be

$$
\begin{aligned}
x(t) & =1 & & -2 \leq t \leq-1 \\
& =-1 & & 1 \leq t \leq 2 \\
& =0 & & \text { elsewhere in }[-3,3]
\end{aligned}
$$

Let
$x(t)=\sum_{k=-\infty}^{\infty} C_{k} e^{j 2 \pi k t / T}$
be the Fourier expansion, where:
$C_{k}=\frac{1}{T} \int_{(T)} x(t) e^{-j 2 \pi k t T} d t$
$\Rightarrow C_{0}=\frac{1}{6} \int_{-3}^{3} x(t) d t=0$
For $k \neq 0$
$C_{k}=\frac{1}{6}\left[\int_{-2}^{-1} e^{-j 2 \pi i t / 6} d t+\int_{1}^{2}(-1) e^{-j 2 \pi i t / 6} d t\right]$
$=\frac{1}{6}\left[\frac{6(\operatorname{Cos}(\pi k / 3)-\operatorname{Cos}(2 \pi k / 3))}{-j \pi k}\right]$
$=\frac{j}{\pi k}(\operatorname{Cos}(\pi k / 3)-\operatorname{Cos}(2 \pi k / 3))$

Substituting in $x(t)$
$x(t)=\sum_{k=-\infty}^{\infty} C_{k} e^{j 2 \pi k t / T}$
(f) It is periodic with period 3 . So, take the segment $t \in[0,3]$

Here $x(t)$ will be

$$
\begin{aligned}
x(t) & =2 & & 0 \leq t \leq 1 \\
& =1 & & 1 \leq \mathrm{t} \leq 2 \\
& =0 & & 2 \leq t \leq 3
\end{aligned}
$$

Let
$\boldsymbol{x}(t)=\sum_{k=-\infty}^{\infty} C_{k} e^{j 2 \pi h / T}$
be the Fourier expansion, where:
$C_{k}=\frac{1}{T} \int_{(T)} x(t) e^{-j 2 \pi k t / T} d t$
$\Rightarrow C_{0}=\frac{1}{3} \int_{(F)} x(t) d t$
$=\frac{1}{3} \times 3=1$
For $k \neq 0$
$C_{k}=\frac{1}{3}\left[\int_{0}^{1} 2 e^{-j 2 x t / 3} d t+\int_{1}^{2} e^{-j 2 x t t / 3} d t\right]$
$=\frac{j}{2 \pi k}\left(e^{-j 4 x t / 3}+3 e^{-j 2 x t / 3}-1\right)$
Substituting in $x(t)$

$$
x(t)=\sum_{k=-\infty}^{\infty} C_{k} e^{j 2 \pi k t / T}
$$

(2)

Let
$x(t)=\sum_{k=-\infty}^{\infty} C_{h} e^{j 2 \pi h t / T}$
be the Fourier expansion, where:
$C_{k}=\frac{1}{T} \int_{(T)} x(t) e^{-j 2 \pi k t / T} d t$
Given $T=2$.
$\Rightarrow C_{0}=\frac{1}{2} \int_{-1}^{1} e^{-t} d t=\frac{1}{2}\left(e-e^{-1}\right)$
For $k \neq 0$
$C_{k}=\frac{1}{2} \int_{-1}^{1} e^{-t} e^{-j \pi d t} d t$
$=\frac{1}{2} \int_{-1}^{1} e^{-t-j \pi k t} d t$
$=\frac{e^{1+j \pi k}-e^{-1-j \pi k}}{2(1+j \pi k)}$
Substituting in $x(t)$
$x(t)=\sum_{k=-\infty}^{\infty} C_{k} e^{j 2 \pi k t / T}$
(3)

Let
$x(t)=\sum_{k=-\infty}^{\infty} C_{k} e^{j 2 \pi h t / T}$
be the Fourier expansion, where:
$C_{k}=\frac{1}{T} \int_{(T)} x(t) e^{-j 2 \pi k t / T} d t$
Given $T=4$
$\Rightarrow C_{0}=\frac{1}{4} \int_{0}^{2} \operatorname{Sin}(\pi t) d t=0$
For $k \neq 0$
$C_{k}=\frac{1}{4} \int_{0}^{2} \operatorname{Sin}(\pi t) e^{-j \pi k t / 2} d t$
$=\frac{1}{8 j} \int_{0}^{2}\left(e^{j \pi t}-e^{-j \pi t}\right) e^{-j \pi \hbar t / 2}$
$=\frac{1}{8 j}\left[\frac{e^{j \pi(2-k)}-1}{j \pi(1-k / 2)}+\frac{e^{-j \pi(2+k)}-1}{j \pi(1+k / 2)}\right]$
$=\frac{e^{-j \pi k}}{\pi\left(k^{2}-4\right)}=\frac{(-1)^{k}}{\pi\left(k^{2}-4\right)}$
Substituting in $x(t)$
$x(t)=\sum_{k=-\infty}^{\infty} C_{k} e^{j 2 \pi k t / T}$

Problem 9

A continuous-time periodic signal $x(t)$ is real valued and has a fundamental period T=8. The NON ZERO Fourier series coefficients for $x(t)$ are specified as
$a_{1}=a_{-1}=j, a_{5}=a_{-5}=2$
Express $x(t)$ in the form
$x(t)=\sum_{k=0}^{\infty} A_{k} \cos \left(w_{k} t+\varphi_{k}\right)$

Solution 9

$x(t)=\sum_{k=-\infty}^{\infty} a_{k} e^{j 2 \pi k / T}$
Given that the non zero coefficients are:

$$
\begin{aligned}
& a_{1}=j ; a_{-1}=-j ; a_{5}=2 ; a_{-5}=2 \\
& =x(t)=2\left(e^{j 2 \pi(5 t / 8}+e^{-j 2 \pi(5 t / 8}\right)+j\left(e^{j 2 \pi(1) t / 8}+e^{-j 2 \pi(1 t / 8)}\right) \\
& =4 \cos (5 \pi t / 4+0)+2 \cos (\pi t / 4-\pi / 2) \\
& w_{k}=2 \pi k / 8=\pi k / 4
\end{aligned}
$$

Comparing with

$$
x(t)=\sum_{k=0}^{\infty} A_{k} \cos \left(w_{k} t+\varphi_{k}\right)
$$

We get the non-zero coefficients as:

$$
\begin{aligned}
& A_{1}=2 ; \phi_{1}=-\pi / 2 \\
& A_{5}=4 ; \phi_{5}=0
\end{aligned}
$$

Problem 10

In this problem, we provide examples of the effects of nonlinear changes in phase.
(a) Consider the continuous time LTI system with frequency response

$$
H(j \omega)=\frac{a-j \omega}{a+j \omega} \quad \text { where } a>0
$$

what is the magnitude of $H(j \omega)$? What is $\Varangle H(j \omega)$? What is the impulse response of this system?
(b) Determine the output of the system of part (a) with $a=1$ when the input is

$$
\operatorname{Cos} \frac{t}{\sqrt{3}}+\operatorname{Cos} t+\operatorname{Cos} \sqrt{3} t
$$

Roughly sketch both the input and the output.

Solution 10 :

(a) $H(j \omega)=\frac{a-\mathrm{j} \omega}{a+\mathrm{j} \omega}$

$$
|H(j \omega)|=\left|\frac{a-j \omega}{a+j \omega}\right|
$$

$$
=\frac{|a-j \omega|}{|a+j \omega|}
$$

$$
=\frac{\sqrt{a^{2}+\omega^{2}}}{\sqrt{a^{2}+\omega^{2}}}
$$

$$
=1
$$

$$
\begin{aligned}
& \text { As a is real and }>0 \Rightarrow \operatorname{Arg}(\mathrm{a}-\mathrm{j} \omega)=-\tan ^{-1}(\omega / a) \quad\left(\text { similarly } \operatorname{Arg}(\mathrm{a}+\mathrm{j} \omega)=\tan ^{-1}(\omega / \mathrm{a})\right) \\
& \Rightarrow \quad \Varangle \mathrm{H}(\mathrm{j} \omega)=-2 \tan ^{-1}(\omega / \mathrm{a})
\end{aligned}
$$

(b) $H(j \omega)=\frac{a-j \omega}{a+j \omega}$
$x(t)=\cos \left(\frac{t}{\sqrt{3}}\right)+\cos t+\cos \sqrt{3} t$

Taking Fourier Transform of $\mathrm{x}(\mathrm{t})$

$$
\mathrm{X}(\mathrm{j} \omega)=\frac{1}{2}\left\{\delta\left(\omega-\frac{1}{\sqrt{3}}\right)+\delta\left(\omega+\frac{1}{\sqrt{3}}\right)+\delta(\omega+1)+\delta(\omega-1)+\delta(\omega-\sqrt{3})+\delta(\omega+\sqrt{3})\right\}
$$

Output response will be the convolution of $\mathrm{z}(\mathrm{t})$ with $\mathrm{h}(\mathrm{t})$.

$$
Y(j \omega)=X(j \omega) \cdot H(j \omega)
$$

$\mathrm{Y}(\mathrm{j} \omega)=\frac{1}{2}\left\{\delta\left(\omega-\frac{1}{\sqrt{3}}\right)+\delta\left(\omega+\frac{1}{\sqrt{3}}\right)+\delta(\omega+1)+\delta(\omega-1)+\delta(\omega-\sqrt{3})+\delta(\omega+\sqrt{3})\right\}\left(\frac{\mathrm{a}-\mathrm{j} \omega}{\mathrm{a}+\mathrm{j} \omega}\right)$
$Y(j \omega)=\frac{1}{2}\left\{\delta\left(\omega-\frac{1}{\sqrt{3}}\right) \frac{\sqrt{3} a-j}{\sqrt{3} a+j}+\delta\left(\omega+\frac{1}{\sqrt{3}}\right) \frac{\sqrt{3} a+j}{\sqrt{3} a-j}+\delta(\omega+1) \frac{a+j}{a-j}+\delta(\omega-1) \frac{a-j}{a+j}+\delta(\omega-\sqrt{3}) \frac{a-\sqrt{3} j}{a+\sqrt{3} j}+\delta(\omega+\sqrt{3}) \frac{a+j \sqrt{3}}{a-j \sqrt{3}}\right\}$

Taking the Fourier transform Inverse of $Y(j \omega)$ we get $y(t)$
$y(t)=\frac{1}{2}\left\{e^{\frac{j t}{\sqrt{3}}} \frac{\sqrt{3} a-j}{\sqrt{3} a+j}+e^{-\frac{j t}{\sqrt{3}}} \frac{\sqrt{3} a+j}{\sqrt{3} a-j}+e^{-j} \frac{a+j}{a-j}+e^{j t} \frac{a-j}{a+j}+e^{j \sqrt{3}} \frac{a-\sqrt{3} j}{a+\sqrt{3} j}+e^{-j \cdot \sqrt{3 t}} \frac{a+j \sqrt{3}}{a-j \sqrt{3}}\right\}$
$y(t)=\frac{1}{2}\left\{e^{\frac{j t}{\sqrt{3}}} e^{-j 2 \tan ^{-1}\left(\frac{1}{a \sqrt{3}}\right)}+e^{-\frac{j t}{\sqrt{3}}} e^{j 2 \tan ^{-1}\left(\frac{1}{a \sqrt{3}}\right)}+e^{-j t} e^{j 2 \tan ^{-1}\left(\frac{1}{a}\right)}+e^{j t} e^{-j 2 \tan ^{-1}\left(\frac{1}{a}\right)}+e^{j \sqrt{\sqrt{3}} t} e^{-j 2 \tan ^{-1}\left(\frac{\sqrt{3}}{a}\right)}+e^{-j \sqrt{\sqrt{3} t}} e^{j 2 \tan ^{-1}\left(\frac{\sqrt{3}}{a}\right)}\right\}$
$y(t)=\frac{1}{2}\left\{\cos \left(\frac{t}{\sqrt{3}}-2 \tan ^{-1}\left(\frac{1}{a \sqrt{3}}\right)\right)+\cos \left(t-2 \tan ^{-1}\left(\frac{1}{a}\right)\right)+\cos \left(\sqrt{3} t-2 \tan ^{-1}\left(\frac{\sqrt{3}}{a}\right)\right)\right\}$

The input $x(t)$ and the output $y(t)$ are shown below (for $a=1$) :-

Problem 11 :

Consider an LTI system whose response to the input

$$
x(t)=\left(e^{-t}+e^{-3 t}\right) u(t)
$$

is

$$
y(t)=\left(2 e^{-t}-2 e^{-4 t}\right) u(t)
$$

(a) Find the frequency response of this system.
(b) Determine the system's impulse response.

Solution 11 :

(a) Given

$$
\begin{aligned}
& x(t)=\left[e^{-t}+e^{-3 t}\right] u(t) \\
& y(t)=\left[2 e^{-t}-2 e^{-4 t}\right] u(t)
\end{aligned}
$$

The Fourier of $e^{-2 t} u(t)[$ where $a>0]$ is $\frac{1}{a+j \omega}$
So Fourier tranform of $x(t)$ is

$$
X(j \omega)=\frac{1}{1+\mathrm{j} \omega}+\frac{1}{3+\mathrm{j} \omega}
$$

Like this the fourier transform of output $y(t)$ is

$$
Y(j \omega)=\frac{2}{1+j \omega}-\frac{2}{4+j \omega}
$$

Let the frequency response of the given LSI system is $\mathrm{H}(\mathrm{j} \omega)$
So by the Convolution Theorem :-

$$
\begin{aligned}
& \text { as } y(t)=x(t)^{*} h(t) \\
\Rightarrow & Y(j \omega)=X(j \omega) H(j \omega) \\
\Rightarrow & \frac{2}{1+j \omega}-\frac{2}{4+j \omega}=\left(\frac{1}{1+j \omega}+\frac{1}{3+j \omega}\right) H(j \omega)
\end{aligned}
$$

By solving this we get:-

$$
\begin{aligned}
& H(j \omega)=3\left[\frac{3+j \omega}{(4+j \omega)(2+j \omega)}\right] \\
& H(j \omega)=\frac{3}{2(4+j \omega)}+\frac{3}{2(2+j \omega)}
\end{aligned}
$$

(b) By taking inverse fourier transform of $\mathrm{H}(\mathrm{j} \omega)$, we get:-

$$
h(t)=\frac{3}{2}\left(e^{-4 t}+e^{-2 t}\right) u(t)
$$

Problem 12 :

Consider the signal $x(t)$ in figure below :
(a) Find the Fourier transform $\mathrm{X}(\mathrm{j} \omega)$ of $\mathrm{x}(\mathrm{t})$.
(b) Sketch the signal

$$
\tilde{x}(t)=x(t) * \sum_{k=-\infty}^{\infty} \delta(t-4 k)
$$

(c) Find another signal $g(t)$ such that $g(t)$ is not the same as $x(t)$ and

$$
\tilde{\mathrm{x}}(\mathrm{t})=\mathrm{g}(\mathrm{t}) * \sum_{\mathrm{k}=-\infty}^{\infty} \delta(\mathrm{t}-4 \mathrm{k})
$$

(d) Argue that, although $\mathrm{G}(\mathrm{j} \omega)$ is different from $\mathrm{X}(\mathrm{j} \omega), \mathrm{G}\left(\mathrm{j} \frac{\pi \mathrm{k}}{2}\right)=\mathrm{X}\left(\mathrm{j} \frac{\pi \mathrm{k}}{2}\right.$) for all integers k . You should not explicitly evaluate $\mathrm{G}(\mathrm{j} \omega)$ to answer this question.

Solution 12 :

(a) Consider the signal $y(t)$ shown below :-

Now consider the convolution of $\mathrm{y}(\mathrm{t})$ with itself. Let the resultant figure be $\mathrm{z}(\mathrm{t})$
$z(t)=y(t) * x(t)$
$=\int_{-\infty}^{\infty} y(k) y(t-k) d k$

Now consider $y(k)$ and $y(t-k)$:

So when $t+A<-A \Rightarrow t<-2 A$,

$$
z(\mathrm{t})=0 \quad \text { as there is no overlap between } \mathrm{y}(\mathrm{k}) \text { and } \mathrm{y}(\mathrm{t}-\mathrm{k})
$$

When $-A \leq t+A<A=>-2 A \leq t<0$ then

$$
z(\mathrm{t})=\int_{\mathrm{A}}^{\mathrm{t}+\mathrm{A}} \mathrm{y}(\mathrm{k}) y(\mathrm{t}-\mathrm{k}) \mathrm{dk}
$$

here $\mathrm{y}(\mathrm{k})=1$ and $\mathrm{y}(\mathrm{t}-\mathrm{k})=1$, so

$$
\begin{aligned}
z(t) & =\int_{-A}^{t+A} 1 d k \\
& =[k]_{-A}^{t+A}=t+2 A
\end{aligned}
$$

When $-A \leq t-A \leq A \Rightarrow 0 \leq t \leq 2 A$, then
$z(t)=\int_{t-A}^{A} y(k) y(t-k) d k$
here $\mathrm{y}(\mathrm{k})=1$ and $\mathrm{y}(\mathrm{t}-\mathrm{k})=1$

$$
\Rightarrow z(t)=\int_{t-A}^{A} 1 d k=[k]_{t-\hat{A}}^{A}=2 A-t
$$

When $t-A>A \Rightarrow t>2 A$, then there is no overlap between $y(k)$ and $y(t-k)$. So,

$$
z(t)=0
$$

So the signal $z(t)$ is:-

Now compare $z(t)$ with the given signal $x(t)$.
Here $x(t)$ is :

]

By comparing, we get

$A=1 / 2$
So $x(t)$ can be thought of a signal, which is the convolution of signal $v(t)$ with itself where $v(t)$ is :

$$
\Rightarrow x(t)=v(t) * v(t)
$$

By Convolution Theorem, the fourier transform of $\mathrm{z}(\mathrm{t})$ is square of the fourier transform of $\mathrm{y}(\mathrm{t})$, i.e.

$$
\mathrm{X}(\mathrm{j} \omega)=[\mathrm{V}(\mathrm{j} \omega)]^{2}
$$

Now consider $\mathrm{v}(\mathrm{t})$
So its Fourier transform $V(j \omega)$ is :-

$$
\begin{aligned}
V(j \omega) & =\int_{-\infty}^{\infty} v(t) e^{-j \omega t} d t \\
& =\int_{-\frac{1}{2}}^{\frac{1}{2}} e^{-j o t} d t \\
& =2 \frac{\operatorname{Sin}\left(\frac{\omega}{2}\right)}{\omega}
\end{aligned}
$$

So $\quad \mathrm{X}(\mathrm{j} \omega)=[\mathrm{V}(\mathrm{j} \omega)]^{2}$

$$
X(j \omega)=4 \frac{\operatorname{Sin}^{2}\left(\frac{\omega}{2}\right)}{\omega^{2}}
$$

(b)

$$
\tilde{\mathrm{x}}(\mathrm{t})=\mathrm{x}(\mathrm{t}) * \sum_{\mathrm{k}=-\infty}^{\infty} \delta(\mathrm{t}-4 \mathrm{k})
$$

Now consider a signal $y_{k}(t)$ where

$$
\begin{aligned}
y_{k}(t) & =x(t) * \delta(t-4 k) \\
y_{k}(t) & =\int_{-\infty}^{\infty} x(\lambda) \delta(t-\lambda-4 k) d \lambda \\
& =\int_{-\infty}^{\infty} x(\lambda) \delta((t-4 k)-\lambda) d \lambda \\
y_{k}(t) & =x(t-4 k) \quad \text { as } \int_{-\infty}^{\infty} x(\lambda) \delta(t-\lambda) d \lambda=x(t)
\end{aligned}
$$

So $y_{k}(t)$ is the shifted version of $x(t)$ by $4 k$ along the t axis which is shown as:-

Now $\quad \tilde{\mathrm{x}}(\mathrm{t})=\sum_{\mathrm{k}=\boldsymbol{\infty}}^{\infty} \mathrm{y}_{\mathrm{k}}(\mathrm{t})$
So $\tilde{x}(\mathrm{t})$ is :-

(c) Any signal which is the shifted version of $x(t)$ by $4 k$ on t axis can be taken as $g(t)$ which satisfies

$$
\tilde{x}(t)=g(t)^{*} \sum_{k=-\infty}^{\infty} \delta(t-4 k)
$$

because by the last part we can say that when we convolve $g(t)$ with $\sum_{k=\infty}^{\infty} \delta(t-4 k)$, it will result in $\tilde{x}(t)$. So, in this case:-

$$
g(t)=x(t-4 k) \quad \text { where } k \in Z
$$

(d) By part (c)

$$
\begin{aligned}
& g(t)=x(t-4 n) \quad \text { where } n \in Z \\
& \Rightarrow G(j \omega)=X(j \omega) e^{-j \omega 4 n} \\
& \text { Now put } \omega=\frac{\pi \mathrm{k}}{2} \\
& \Rightarrow G\left(j \frac{\pi k}{2}\right)=X\left(j \frac{\pi k}{2}\right) e^{j \frac{x k}{2} 4 n} \\
& =X\left(j \frac{\pi k}{2}\right) e^{-j 2 m x} \quad m \in Z \text { and } m=k \cdot n \\
& \mathrm{G}\left(\mathrm{j} \frac{\pi \mathrm{k}}{2}\right)=\mathrm{X}\left(\mathrm{j} \frac{\pi \mathrm{k}}{2}\right) \quad \text { as } \mathrm{e}^{-\mathrm{j} 2 \mathrm{~m} \pi}=1
\end{aligned}
$$

