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Introduction

* Wavelet Transform = Buzz word!
* Next 100 years will be of WT !

 Relatively new and efficient way of
representing signals

e Multiresolution analysis helps analyze the
information at multiple resolutions,
simultaneously



Wavelet Transform

* Why transform?
e One serious reason — convenience!

 All prior transforms have a common
thread of ‘e’ !



Analysis of LTI systems

Analysis of LTI Systems

I

Convolution Difference Equations



HOW Convolution

 Step I: Decompose given signal into
shifted impulse sequences.

1 X[n]

X[n] = {?,1,0,—1}

|

R



HOW Convolution

v[n] = 08[n] + 16[n — 1]+ 08[n — 2] + 18[n — 3]
R B n
} 16[n — 1] :
o2
T ey




HOW Convolution

O

rin| = Z v|k|oin — k

k=—00



HOW Convolution

o Step 1l
y[n.k] = h[nk] = H[ delta [n] ]
e Step llI: yln] = H] _Z v|k]lon — k||

=» Because of superposition (linearity)

o Step IV hin — k| = H[6[n — K]

=>» Because of Time Invariance



Thus Convolution !!

O

rin| = Z v|k|oin — k

k=—00



How Fourier Works!!



How Fourier Works!!



How Fourier Works!!




How Fourier Works!!

el | hpn]  —> ylnj




How Fourier Works!!

el | hpn]  —> ylnj

o0

y[n]= > x[kIn[n—K]

K=—00



How Fourier Works!!

el | hpn]  —> ylnj

o0

y[n]= > x[n—K]h[K]

K=—00



How Fourier Works!!

el | hpn]  —> ylnj

o0

y[n]= > """ “hk]

K=—00



How Fourier Works!!

el | hpn]  —> ylnj

yln] = Z h[kJe'*"e "



How Fourier Works!!

el | hpn]  —> ylnj

yinl=e™" 3 hikle

K=—00



How Fourier Works!!

el | hpn]  —> ylnj

eigenfunction

yinl=e™" " hikle

K=—00



How Fourier Works!!

el | hpn]  —> ylnj

eigenfunction

y[n] ="

eigenvalue



Common thread in all transforms

gl ! h[n]

5 YIn]

eigenfunction

N

y[n]=e"*"

DFT 111

eigenvalue
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Story of ‘e’

» Dr. Bernolli 2 Underwent an apparent
accident to discover constant ‘e’

* Dr. Euler = Gave the real meaning to
constant ‘e’

* Dr. Fourier = Used it for analyzing
periodic / aperiodic functions/signals



Summary

* ‘e’>eigenvalue—>eigenfunction—>fourier
transform-> convolution—>LT]
systems—>bandlimited signals—> aperiodic
signals—> sampling theorem-> no aliases
in reconstruction—> sparse representation
—> inverse FT—> convolution—> phase
changes marked as directional changes—>
eigenfunction—> eigenvalue—> ‘e’ !!



Wavelet Transform

|

* Decomposes signal into
two separate series

7 N\

* Single series to » Double series to
represent most represent refined
coarse version version

| |

e Scaling Function » Wavelet Function



Two Questions

e Aren’t conventional methods to represent
signals/function good enough?

* What is strikingly special about Wavelet
representation!?



Basic representation of signals

* Known for a long time
» E.g. Taylor series expansion at x0=0

‘j n

= '
Z—_1+ ST re R
— n! 2 n!

* Decomposed pieces can be used for
reconstruction
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Cooperation of series

* In Taylor series, this cooperation to build
better representation is ‘rigid’

* We don’t have freedom but to add large
number of terms

* In Wavelet analysis scaling function and
associated wavelet function makes the
representation ‘flexible’



Cooperation of series

: 1.
* In Wavelet analysis the scale 77 is

dependent on refinement needed

* E.g. Use high value of j to determine

spikes!
P K

e Then, a translation 7j« ~ 5 can be used
to focus on that part!



Fourier Series

* Noteworthy advancement of Fourier
series over Taylor is set {1, cosnx,sinnx},

is orthogonal on (-, r), whereas powers
of Taylor series, in general, are not!

o0
flz) = {1.D+Z(chmsk;r—|—E};I,Einﬁf;r, —T<x<T
k=1
1 o0
ap = 3 f(z)dz,
2T J—o0

1 o
a, = —f f(x)sin kzdz,
mJ—oo

1 o
bn = —f f(x) cos kxdzx
mJ—oo



Fourier Series

* Special relation exists between sine and
cosine parts of Fourier series

e Similar special relation exists between
scaling functions and wavelet series!!

o0
flz) = {1.D+Z(chmsk;r—|—E};I,Einﬁf;r, —T<x<T
k=1
1 o0
ap = 3 f(z)dz,
2T J—o0

1 o
a, = —f f(x)sin kzdz,
mJ—oo

1 o
bn = —f f(x) cos kxdzx
mJ—oo



Two Questions

e Aren’t conventional methods to represent
signals/function good enough?

* What is strikingly special about Wavelet
representation!?



Wavelet Transform: Speciality

e Scaling and Translation are indeed
Hallmarks of Wavelet transform

* They lead us to MultiResolutioAnalysis
(MRA) !!



Central Theme of MRA

* Piecewise constant approximations on
UNIT intervals

* Filling in details 2 Zoom in OR

Loosing details 2 Zoom out
* Increasing resolution 2 Zoom in OR
Decreasing resolution 2 Zoom out

» Going arbitrarily close to the original
signal!



Linear Space
'X(t), such that

V, =1
| X() e L)

 Space of all functions which are square

integrable > L, (R)

* And x(.) is piecewise constant on all
In,n+1[, n = integers

s Size of the interval = 2°



Linear Space
'X(t), such that

V, =1
| X() e L)

 Space of all functions which are square

integrable > L, (R)

* And x(.) is piecewise constant on all
In,n+1[, n = integers

s Size of the interval > 2°
 Similarly we define V,



Linear Space
'X(t), such that

V, =
- x() e L,(R)

 Space of all functions which are square

integrable > L, (R)

* And x(.) is piecewise constant on all
127'n,2'n+1[,neZ

« Size of the interval >2

* Similarly we define V,



Linear Space
'X(t), such that

V. =
- x() e L (R)

 Space of all functions which are square

integrable > L, (R)

* And x(.) is piecewise constant on all
127"n,2"n+1[,neZ

« Size of the interval >2



Relationship

* As the spaces and spans are clear now

* Intuitionally, we observe a relationship
between these spaces!

....... V,cV, cV,cV,cV,....

* Intuitively we can see that as we move
towards right, i.e. up the ladder, we are
moving towards L, (N)



Relationship

* As the spaces and spans are clear now

* Intuitionally, we observe a relationship
between these spaces!

* What happens when we move in left
direction i.e. down the ladder!



Relationship

* As the spaces and spans are clear now

* Intuitionally, we observe a relationship
between these spaces!

....... V,cV, cV,cV,cV,....

* The interval is going to get bigger and
bigger, thus resolution shall be coarser
and coarser



L2 norm

* If we require L2 norm to converge as we
move in left direction, irrespective of m
growing in negative direction, then,

i IC_(n)P must be zero!!!
e Thatis C_(n)=0,Vn

e Hence, movement towards the left
implies movement towards the trivial
subspace {0}



Moving downwards

e We can write

V., ={0}

me’Z

e Trivial sub-space of L2!
e It is different than null sub-space



Moving upwards

e We can write

Uvm =L, (R)

me’Z

e With closure



Haar MRA — ldea of wavelets

* We can construction this all using a single
function!

)

LIGIN . ]
: hi ! he T
il T 302 1o
T/ Tirme

t—T

f(t)— 1,(1) = hﬁ“:”(%j"'hleﬂ(?j



Haar MRA — ldea of wavelets

* We can construction this all using a single
function! This will span WV spaces

)

LGOI [ .
: hi ! he T,
szhl T L Titie
t t—T
f.(t)—1,(t)=h XW(;)"‘ h, XW(?j

* What will span Vo and other spaces at
that resolution??



This function !!

()




Scaling Function!

* Thus, any spaceV_ can be similarly
constructed using a function ®(2™t)

V_=span{g(2"t—n)}

neZ

 This will again generate ladder of
subspaces!!



Axioms of MRA

 Ladder of subspaces of
...... V,CV,CV,CV, CV,....
are such that:

meZ

2. [ V. ={0}

me/Z

3.There exists a O(t) such that

V,, = span{$(2"t - n)}

neZ



Axioms of MRA

4. ¢(t—n),_, Is an orthogonal set
5.1f  f(t)ev,

then, f(2"t)eV,,VmeZ
6. If f(t) eV,

then, f(t—-n)eV,,vneZ



MRA Theorem

e Given these axioms, there exists a

w(.) e L,(R)
so that W{Z_mt — n}

meZ ne’

span |_2 (9{)



2 Band MRA Filter Bank

) 0 )

p[n]

—> G0() U,

Analysis Synthesis



2 Band MRA Filter Bank VY

p[n]

Po[N]

Vl

FE0(3)

—j2—

Qo[ N]

G0

—@W>

0



Wavelet Transform

|

* Decomposes signal into
two separate series

7 N\

* Single series to » Double series to
represent most represent refined
coarse version version

| |

e Scaling Function » Wavelet Function



Application

* Detecting hidden jump discontinuity
e Consider function

(

t,O£t<i

om=1 2

t—-1—<t<l
2

.

e Clear jump at t=0.5



Application

* Detecting hidden jump discontinuity
* Let’s integrate

2
t—,O£t<i
()= [g(tydt=1 , 2

2
t——t4r1,1£t<1
L2 2 2

e Cusp jump at t=0.5



Application

* Detecting hidden jump discontinuity

e Let’s integrate again

f(t) = j h(t)dt = -

* Appears smooth

3
t—,O£t<i
0 2
3 2
t_! +t—1,l£t<1
6 2 2 82
to eye



Wavelet Packet Analysis

W (1) =23 hik]W ™ (2t - k)

W (1) =23 g[k]W M (2t — k)



Wavelet Packet Analysis

W (1) =23 hik]W ™ (2t - k)

h[k] =+

’

1 1
V22
W (1) = 23" g[k]W M (2t - k)

K

——

1\
\/Ez

olkl={ .



Wavelet Packet Analysis
n=0

W () = g2/t k)

([jl]k)(t) W(th K)



Wavelet Packet Analysis

n=0

WL (1) = $(2't k)

([jl]k) (t) = W(th 9




Wavelet Packet Analysis

n=1
W (1) =2 h[k]W ™ (2t k)

WEI(t) = V2 g[k]WH (2t — k)



Wavelet Packet Analysis

n=1

[2]
W(J',k)

(t)

Wt (2t)

+

w2t -1)
Lid i1l




Wavelet Packet Analysis

n=1

[3]
W(J',k)

(t)

Wt (2t)

+

W ot —
| 11 ||||_W (2t=1)




Bases

S I A .

el 11 p i
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Bases

Wl (t)

WH (t)

Wl (t)

S I A .

WE(t)

el 11 p i

W[4] (t)
N I -

W (t)

I

W (t)

S N B I .

w7 (t)

S I A .



Wavelet Packet Analysis

W (1) =23 hik]W ™ (2t - k)

h[k] =+

’

1 1
V22
W (1) = 23" g[k]W M (2t - k)

K

——

1\
\/Ez

olkl={ .



Example

x[n]={10,-3,2,1,0,1, 2} €V,

e Show complete decomposition using
Haar Wavelet Packets till VO

* Demonstrate complete reconstruction



Example

x[n]={L2,3,4,5,6,7,8} eV,

e Show complete decomposition using
Haar Wavelet Packets till VO

* Demonstrate complete reconstruction

x[n]={L2,3,4,0,6,7,8} €V,



Wavelet Packet Analysis

W (1) =23 hik]W ™ (2t - k)

h[k] =+

’

1 1
V22
W (1) = 23" g[k]W M (2t - k)

K

——

1\
\/Ez

olkl={ .



Coefficients

* Who gives us coefficients of scaling
equation!?

* Haar r
I, 0<£zx< %

h(t) =9 -1, 3<z<1

L 0, otherwise

. I, 0<z<1
ﬂ(f){ |

0. otherwise



Properties of scaling coefficients

2. ) ho, = L
2k — \/§



Properties of scaling coefficients

4, Z ‘h-k‘g — 1

5. > hi—athie = 010

0. ZQfZ-A;_th-k—Qj = 0



Thank You!
Questions ??



