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IntroductionIntroductionIntroductionIntroduction

Wavelet Transform Buzz word!
Next 100 years will be of WT !
Relatively new and efficient way of Relatively new and efficient way of 
representing signals
Multiresolution analysis helps analyze the Multiresolution analysis helps analyze the 
information at multiple resolutions, 
simultaneouslysimultaneously



Wavelet TransformWavelet TransformWavelet TransformWavelet Transform

Why transform?y

One serious reason – convenience!One serious reason convenience!

All i  f  h    All prior transforms have a common 
thread of ‘e’ !



Analysis of LTI systemsAnalysis of LTI systemsAnalysis of LTI systemsAnalysis of LTI systems

Analysis of LTI Systems

Convolution Difference EquationsConvolution



HOW ConvolutionHOW ConvolutionHOW ConvolutionHOW Convolution

Step I: Decompose given signal into p p g g
shifted impulse sequences.

x[n]

x[n] = {0,1,0,-1}

n



HOW ConvolutionHOW ConvolutionHOW ConvolutionHOW Convolution
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HOW ConvolutionHOW ConvolutionHOW ConvolutionHOW Convolution



HOW ConvolutionHOW ConvolutionHOW ConvolutionHOW Convolution

Step II:
y[n,k] = h[n,k] = H[ delta [n] ] y[ ] [ ] [ [ ] ]

Step III:

Because of superposition (linearity)
Step IVStep IV

Because of Time InvarianceBecause of Time Invariance



Thus Convolution !!Thus Convolution !!Thus Convolution !!Thus Convolution !!



How Fourier Works!!How Fourier Works!!How Fourier Works!!How Fourier Works!!

[ ]h n k−
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How Fourier Works!!How Fourier Works!!How Fourier Works!!How Fourier Works!!
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How Fourier Works!!How Fourier Works!!How Fourier Works!!How Fourier Works!!
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How Fourier Works!!How Fourier Works!!How Fourier Works!!How Fourier Works!!
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How Fourier Works!!How Fourier Works!!How Fourier Works!!How Fourier Works!!
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How Fourier Works!!How Fourier Works!!How Fourier Works!!How Fourier Works!!

[ ]h[n]0j ne ω [ ]y n

eigenfunction
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eigenfunction

0 0[ ] [ ]j n j ky n e h k eω ω
∞

−= ∑[ ] [ ]
k

y
=−∞
∑



How Fourier Works!!How Fourier Works!!How Fourier Works!!How Fourier Works!!

[ ]h[n]0j ne ω [ ]y n

eigenfunction

∞

eigenfunction
DFT !!!

0 0[ ] [ ]j n j ky n e h k eω ω
∞

−= ∑[ ] [ ]
k

y
=−∞
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eigenvalue



Common thread in all transformsCommon thread in all transformsCommon thread in all transformsCommon thread in all transforms

[ ]h[n]0j ne ω [ ]y n

eigenfunction

∞

eigenfunction
DFT !!!
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∞
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Story of ‘e’Story of ‘e’Story of eStory of e

Dr. Bernolli Underwent an apparent pp
accident to discover constant ‘e’

Dr. Euler Gave the real meaning to 
constant ‘e’constant e

D  F i  U d i  f  l i  Dr. Fourier Used it for analyzing 
periodic / aperiodic functions/signals



SummarySummarySummarySummary

‘e’ eigenvalue eigenfunction fourier g g
transform convolution LTI 
systems bandlimited signals aperiodic y g p
signals sampling theorem no aliases 
in reconstruction sparse representation p p

inverse FT convolution phase 
changes marked as directional changesg g
eigenfunction eigenvalue ‘e’ !!



Wavelet TransformWavelet TransformWavelet TransformWavelet Transform

Decomposes signal into 
two separate series

Single series to Double series to Single series to 
represent most 
coarse version

Double series to 
represent refined 
versioncoarse version version

S l  FScaling Function Wavelet Function



Two QuestionsTwo QuestionsTwo QuestionsTwo Questions

Aren’t conventional methods to represent p
signals/function good enough?

What is strikingly special about Wavelet 
representation?representation?



Basic representation of signalsBasic representation of signalsBasic representation of signalsBasic representation of signals

Known for a long timeg
E.g. Taylor series expansion at x0=0

Decomposed pieces can be used for 
reconstruction



Basic representation of signalsBasic representation of signalsBasic representation of signalsBasic representation of signals



Cooperation of seriesCooperation of seriesCooperation of seriesCooperation of series

In Taylor series, this cooperation to build y p
better representation is ‘rigid’
We don’t have freedom but to add large e o t ave ee o  but to a  a ge 
number of terms
In Wavelet analysis scaling function and In Wavelet analysis scaling function and 
associated wavelet function makes the 
representation ‘flexible’representation flexible



Cooperation of seriesCooperation of seriesCooperation of seriesCooperation of series

In Wavelet analysis the scale     is 
1
2 jy

dependent on refinement needed
E.g. Use high value of j to determine 

2

.g. Use g  va ue o  j to ete e 
spikes!
Then  a translation              can be used 2j k j

kτ =Then, a translation              can be used 
to focus on that part!

, 2j k j



Fourier SeriesFourier SeriesFourier SeriesFourier Series

Noteworthy advancement of Fourier y
series over Taylor is set
is orthogonal on           , whereas powers 

1{1,cos ,sin }nnx nx ∞
=

( )π π−s o t ogo a  o            , w e eas powe s 
of Taylor series, in general, are not!

( , )π π



Fourier SeriesFourier SeriesFourier SeriesFourier Series

Special relation exists between sine and p
cosine parts of Fourier series
Similar special relation exists between S a  spec a  e at o  e sts betwee  
scaling functions and wavelet series!!



Two QuestionsTwo QuestionsTwo QuestionsTwo Questions

Aren’t conventional methods to represent p
signals/function good enough?

What is strikingly special about Wavelet 
representation?representation?



Wavelet Transform: Wavelet Transform: SpecialitySpecialityWavelet Transform: Wavelet Transform: SpecialitySpeciality

Scaling and Translation are indeed g
Hallmarks of Wavelet transform

They lead us to MultiResolutioAnalysis 
(MRA) !!(MRA) !!



Central Theme of MRACentral Theme of MRACentral Theme of MRACentral Theme of MRA

Piecewise constant approximations on pp
UNIT intervals
Filling in details Zoom in ORg  eta s oo   O
Loosing details Zoom out

Increasing resolution Zoom in ORIncreasing resolution Zoom in OR
Decreasing resolution Zoom out
G i  bi il  l   h  i i l Going arbitrarily close to the original 
signal!



Linear SpaceLinear SpaceLinear SpaceLinear Space

0

( ),  such that x t
V

⎧
= ⎨

S  f ll f i  hi h   

0
2(.) ( )

V
x L⎨ ∈ ℜ⎩

Space of all functions which are square 
integrable 2 ( )L ℜ
And x(.) is piecewise constant on all 
]n,n+1[, n integers
Size of the interval 02
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Linear SpaceLinear SpaceLinear SpaceLinear Space

1

( ),  such that x t
V

⎧
= ⎨

S  f ll f i  hi h   

1
2(.) ( )

V
x L⎨ ∈ ℜ⎩

Space of all functions which are square 
integrable 2 ( )L ℜ
And x(.) is piecewise constant on all

1 1]2 , 2 1[,n n n Z− − + ∈

Size of the interval 
Similarly we define  

12−

2VSimilarly we define  2V



Linear SpaceLinear SpaceLinear SpaceLinear Space
( ),  such that x t

V
⎧

= ⎨

S  f ll f i  hi h   

2(.) ( )mV
x L⎨ ∈ ℜ⎩

Space of all functions which are square 
integrable 2 ( )L ℜ
And x(.) is piecewise constant on all
]2 , 2 1[,m mn n n Z− − + ∈

Size of the interval 2 m−



RelationshipRelationshipRelationshipRelationship

As the spaces and spans are clear nowp p
Intuitionally, we observe a relationship 
between these spaces!betwee  t ese spaces!

V V V V V⊂ ⊂ ⊂ ⊂2 1 0 1 2....... .......V V V V V− −⊂ ⊂ ⊂ ⊂

Intuitively we can see that as we move 
towards right, i.e. up the ladder, we are 
moving towards 

2 ( )L ℜ



RelationshipRelationshipRelationshipRelationship

As the spaces and spans are clear nowp p
Intuitionally, we observe a relationship 
between these spaces!betwee  t ese spaces!

V V V V V⊂ ⊂ ⊂ ⊂2 1 0 1 2....... .......V V V V V− −⊂ ⊂ ⊂ ⊂

What happens when we move in left 
direction i.e. down the ladder?



RelationshipRelationshipRelationshipRelationship

As the spaces and spans are clear nowp p
Intuitionally, we observe a relationship 
between these spaces!betwee  t ese spaces!

V V V V V⊂ ⊂ ⊂ ⊂2 1 0 1 2....... .......V V V V V− −⊂ ⊂ ⊂ ⊂

The interval is going to get bigger and 
bigger, thus resolution shall be coarser 
and coarser 



L2 normL2 normL2 normL2 norm

If we require L2 norm to converge as we q g
move in left direction, irrespective of m 
growing in negative direction, then,g g g

must be zero!!!2| ( ) |m
n

C n
∞

=−∞
∑

That is
H  t t d  th  l ft 

( ) 0,mC n n= ∀

Hence, movement towards the left 
implies movement towards the trivial 

b  {0} subspace {0} 



Moving downwardsMoving downwardsMoving downwardsMoving downwards

We can write

I {0}m
m Z

V
∈

=I
m Z∈

Trivial sub-space of L2!
It is different than null sub-spacep



Moving upwardsMoving upwardsMoving upwardsMoving upwards

We can write

U 2 ( )m
Z

V L= ℜU
m Z∈

With closure



HaarHaar MRA MRA –– Idea of waveletsIdea of waveletsHaarHaar MRA MRA Idea of waveletsIdea of wavelets

We can construction this all using a single g g
function!

1 2 1 2( ) ( ) t t Tf t f t h h
T T

ψ ψ −⎛ ⎞ ⎛ ⎞− = × + ×⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

1 2 1 2( ) ( )f f
T T

ψ ψ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠



HaarHaar MRA MRA –– Idea of waveletsIdea of waveletsHaarHaar MRA MRA Idea of waveletsIdea of wavelets
We can construction this all using a single 
f ncti n! This ill s an W s acesfunction! This will span W spaces

1 2 1 2( ) ( ) t t Tf t f t h h
T T

ψ ψ −⎛ ⎞ ⎛ ⎞− = × + ×⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

What will span Vo and other spaces at 
that resolution??

1 2 1 2( ) ( )f f
T T

ψ ψ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

that resolution??



This function !!This function !!This function !!This function !!



Scaling Function! Scaling Function! Scaling Function! Scaling Function! 

Thus, any space Vm can be similarly y p m y
constructed using a function Φ(2mt)

{ (2 )}mφ{ (2 )}m
m

n Z
V span t nφ

∈
= −

This will again generate ladder of 
b !!subspaces!!



Axioms of MRAAxioms of MRAAxioms of MRAAxioms of MRA

Ladder of subspaces of p
……V-2 СV-1 СV0 СV1 СV2…..
are such that:are such that:

1. 2 ( )m
m Z

V L
∈

≈ ℜU

2. 

m Z∈

{0}m
m Z

V
∈

=I
3. There exists a Φ(t) such that 

m Z∈

{ (2 )}mV span t nφ{ (2 )}m
n Z

V span t nφ
∈

= −



Axioms of MRAAxioms of MRAAxioms of MRAAxioms of MRA

4.               Is an orthogonal set( )n Zt nφ ∈− g
5. If    

then
( ) mf t V∈

(2 )mf t V m Z− ∈ ∀ ∈then,
6. If    

h

0(2 ) ,f t V m Z∈ ∀ ∈

0( )f t V∈

( )f t V Z∀then, 0( ) ,f t n V n Z− ∈ ∀ ∈



MRA TheoremMRA TheoremMRA TheoremMRA Theorem

Given these axioms, there exists a  

2(.) ( )Lψ ∈ ℜ

so that  ,{2 }m
m Z n Zt nψ −
∈ ∈−

span   
2 ( )L ℜ2 ( )



2 Band MRA Filter Bank2 Band MRA Filter Bank2 Band MRA Filter Bank2 Band MRA Filter Bank

H0(z) 2 2 H1(z)

[ ]p n
+

2 2 G1( )G0(z) 2 2 G1(z)

S th iAnalysis Synthesis



2 Band MRA Filter Bank2 Band MRA Filter Bank 0V2 Band MRA Filter Bank2 Band MRA Filter Bank

[ ]p n 0[ ]p n
0

H0(z)
[ ]p n

2

[ ]q n
1V

0[ ]q n

G0( ) 2
0W

G0(z) 2



Wavelet TransformWavelet TransformWavelet TransformWavelet Transform

Decomposes signal into 
two separate series

Single series to Double series to Single series to 
represent most 
coarse version

Double series to 
represent refined 
versioncoarse version version

S l  FScaling Function Wavelet Function



ApplicationApplicationApplicationApplication

Detecting hidden jump discontinuityg j p y
Consider function

1,0
2

t t⎧ ≤ <⎪⎪ 2( )
11, 1
2

g t
t t

⎪= ⎨
⎪ − ≤ <
⎪⎩

Clear jump at t=0.5

,
2⎪⎩

j p



ApplicationApplicationApplicationApplication

Detecting hidden jump discontinuityg j p y
Let’s integrate

⎧ 2 1,0
2 2( ) ( )

t t
h t g t dt

⎧
≤ <⎪⎪= = ⎨∫ 2

( ) ( )
1 1, 1

2 2 2

h t g t dt
t t t

= = ⎨
⎪ − + ≤ <⎪⎩

∫

Cusp jump at t=0.5

⎩

p j p



ApplicationApplicationApplicationApplication

Detecting hidden jump discontinuityg j p y
Let’s integrate again

⎧ 3 1,0
6 2( ) ( )

t t
f t h t dt

⎧
≤ <⎪⎪= = ⎨∫ 3 2

( ) ( )
1 1, 1

6 2 2 8 2

f t h t dt
t t t t

= = ⎨
⎪ − + − ≤ <⎪⎩

∫

Appears smooth to eye

⎩

pp y



Wavelet Packet AnalysisWavelet Packet AnalysisWavelet Packet AnalysisWavelet Packet Analysis

[2 ] [ ]∑[2 ] [ ]( ) 2 [ ]. (2 )n n

k
W t h k W t k= −∑

[2 1] [ ]( ) 2 [ ]. (2 )n n

k
W t g k W t k+ = −∑

k



Wavelet Packet AnalysisWavelet Packet AnalysisWavelet Packet AnalysisWavelet Packet Analysis

[2 ] [ ]∑[2 ] [ ]( ) 2 [ ]. (2 )n n

k
W t h k W t k= −∑

1 1⎧ ⎫1 1[ ] ,
2 2

h k ⎧ ⎫= ⎨ ⎬
⎩ ⎭

[2 1] [ ]( ) 2 [ ]. (2 )n nW t g k W t k+ = −∑
k
∑

1 1[ ] ,g k ⎧ ⎫= −⎨ ⎬[ ] ,
2 2

g k ⎨ ⎬
⎩ ⎭



Wavelet Packet AnalysisWavelet Packet AnalysisWavelet Packet AnalysisWavelet Packet Analysis

0n =
[0] ( ) (2 )jW t t kφ= −

0n =
( , ) ( ) (2 )j kW t t kφ= −

[1]
( , ) ( ) (2 )j

j kW t t kψ= −



Wavelet Packet AnalysisWavelet Packet AnalysisWavelet Packet AnalysisWavelet Packet Analysis

0n =
[0]

( , ) ( ) (2 )j
j kW t t kφ= −

0n =
( , )j

[1]
( , ) ( ) (2 )j

j kW t t kψ= −



Wavelet Packet AnalysisWavelet Packet AnalysisWavelet Packet AnalysisWavelet Packet Analysis

1n =1n =
[2] [1]( ) 2 [ ] (2 )W h k W k∑[2] [1]( ) 2 [ ]. (2 )

k
W t h k W t k= −∑

[3] [1]( ) 2 [ ] (2 )W t g k W t k= −∑( ) 2 [ ]. (2 )
k

W t g k W t k= −∑



Wavelet Packet AnalysisWavelet Packet AnalysisWavelet Packet AnalysisWavelet Packet Analysis

1n =
[2] ( )W t

1n =
( , ) ( )j kW t

+ [1](2 1)W t −

[1] (2 )W t



Wavelet Packet AnalysisWavelet Packet AnalysisWavelet Packet AnalysisWavelet Packet Analysis

1n =
[3] ( )W t

1n =
( , ) ( )j kW t

+ [1](2 1)W t− −

[1] (2 )W t



BasesBasesBasesBases



BasesBasesBasesBases



BasesBasesBasesBases



BasesBasesBasesBases



BasesBases
[0] ( )W t [4] ( )W tBasesBases

[1] [5][1] ( )W t [5] ( )W t

[2] ( )W t
[6] ( )W t( )

[3] ( )W t
[7] ( )W t



Wavelet Packet AnalysisWavelet Packet AnalysisWavelet Packet AnalysisWavelet Packet Analysis

[2 ] [ ]∑[2 ] [ ]( ) 2 [ ]. (2 )n n

k
W t h k W t k= −∑

1 1⎧ ⎫1 1[ ] ,
2 2
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⎩ ⎭

[2 1] [ ]( ) 2 [ ]. (2 )n nW t g k W t k+ = −∑
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∑
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ExampleExampleExampleExample

[ ] {1 0 3 2 1 0 1 2}x n V∈
Show complete decomposition using 

3[ ] {1,0, 3, 2,1,0,1, 2}x n V= − ∈
Show complete decomposition using 
Haar Wavelet Packets till V0
Demonstrate complete reconstructionDemonstrate complete reconstruction



ExampleExampleExampleExample

[ ] {1 2 3 4 5 6 7 8}x n V∈
Show complete decomposition using 

3[ ] {1, 2,3, 4,5,6,7,8}x n V= ∈
Show complete decomposition using 
Haar Wavelet Packets till V0
Demonstrate complete reconstructionDemonstrate complete reconstruction

3[ ] {1, 2,3, 4,0,6,7,8}x n V= ∈



Wavelet Packet AnalysisWavelet Packet AnalysisWavelet Packet AnalysisWavelet Packet Analysis

[2 ] [ ]∑[2 ] [ ]( ) 2 [ ]. (2 )n n

k
W t h k W t k= −∑

1 1⎧ ⎫1 1[ ] ,
2 2

h k ⎧ ⎫= ⎨ ⎬
⎩ ⎭

[2 1] [ ]( ) 2 [ ]. (2 )n nW t g k W t k+ = −∑
k
∑

1 1[ ] ,g k ⎧ ⎫= −⎨ ⎬[ ] ,
2 2
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⎩ ⎭



CoefficientsCoefficientsCoefficientsCoefficients

Who gives us coefficients of scaling g g
equation?
Haaraa



Properties of scaling coefficientsProperties of scaling coefficientsProperties of scaling coefficientsProperties of scaling coefficients



Properties of scaling coefficientsProperties of scaling coefficientsProperties of scaling coefficientsProperties of scaling coefficients



Thank You!Thank You!Thank You!Thank You!
Questions ??


