Lecture 46 – Some Thoughts on Wavelets: Zooming Out

Dr. Aditya Abhyankar

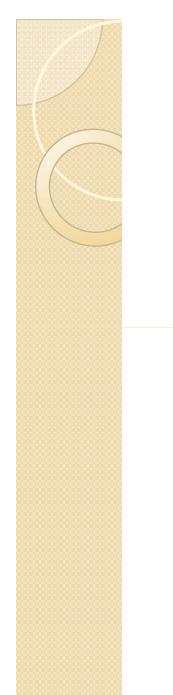
0

Introduction

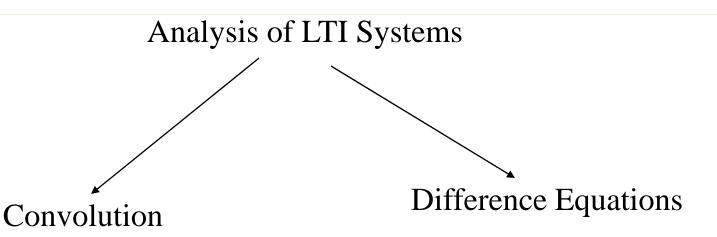
- Wavelet Transform \rightarrow Buzz word!
- Next 100 years will be of WT !
- Relatively new and efficient way of representing signals
- Multiresolution analysis helps analyze the information at multiple resolutions, simultaneously

Wavelet Transform

- Why transform?
- One serious reason convenience!
- All prior transforms have a common thread of 'e' !

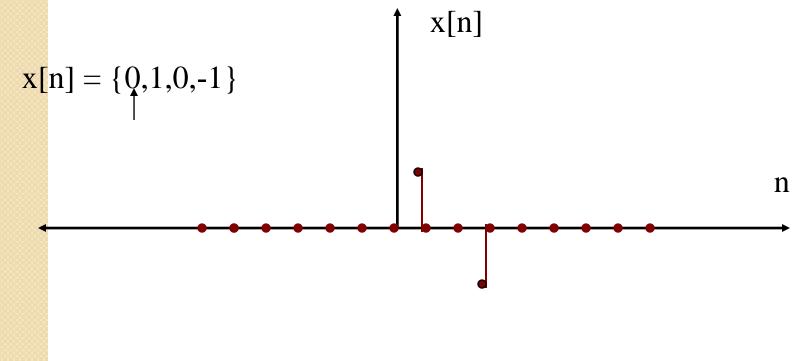


Analysis of LTI systems

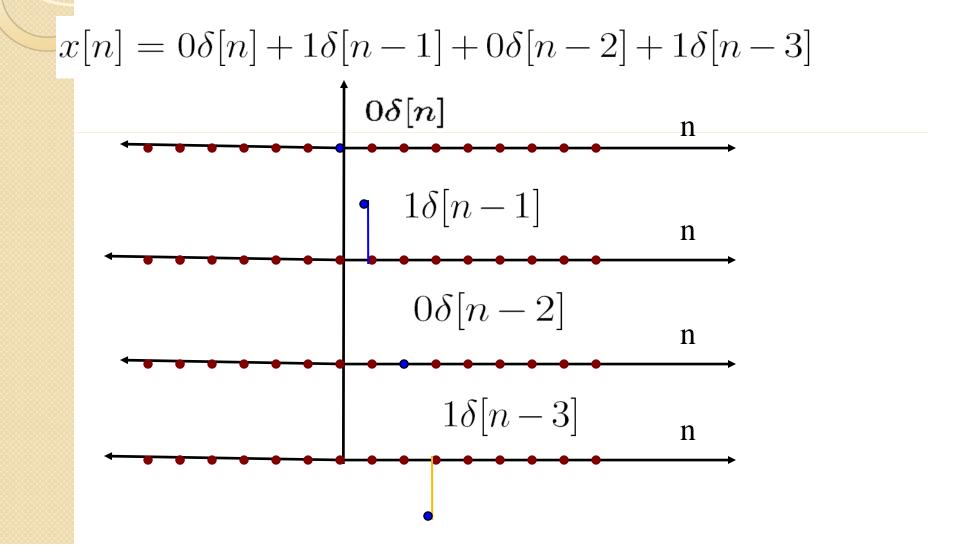


HOW Convolution

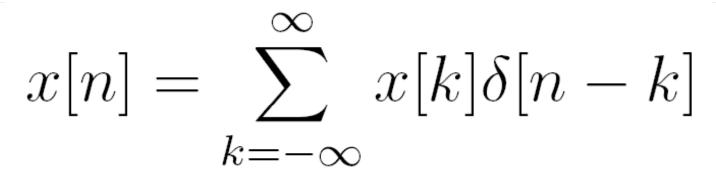
• Step I: Decompose given signal into shifted impulse sequences.

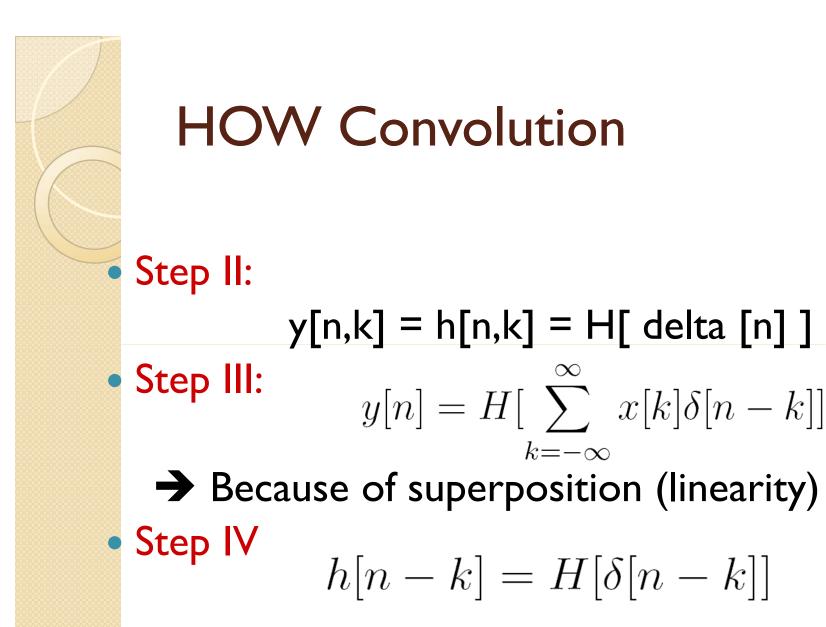


HOW Convolution



HOW Convolution

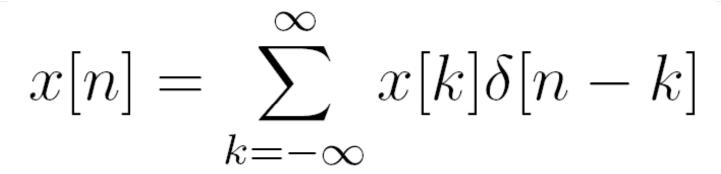


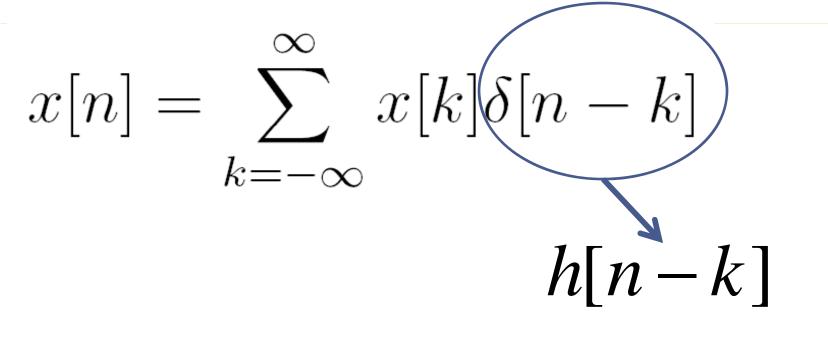


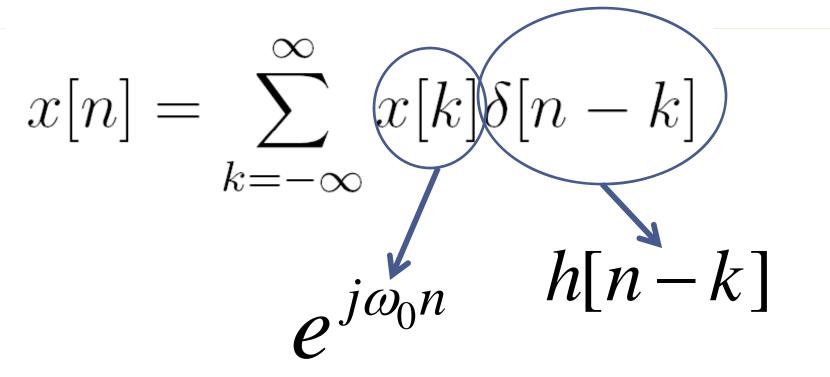
Because of Time Invariance \rightarrow

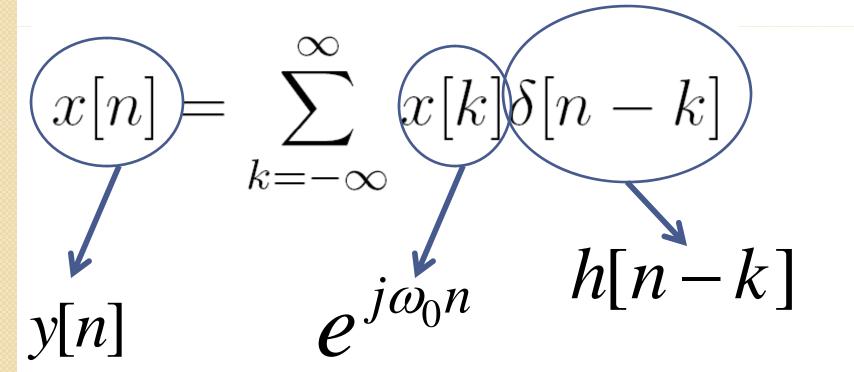
 $k = -\infty$

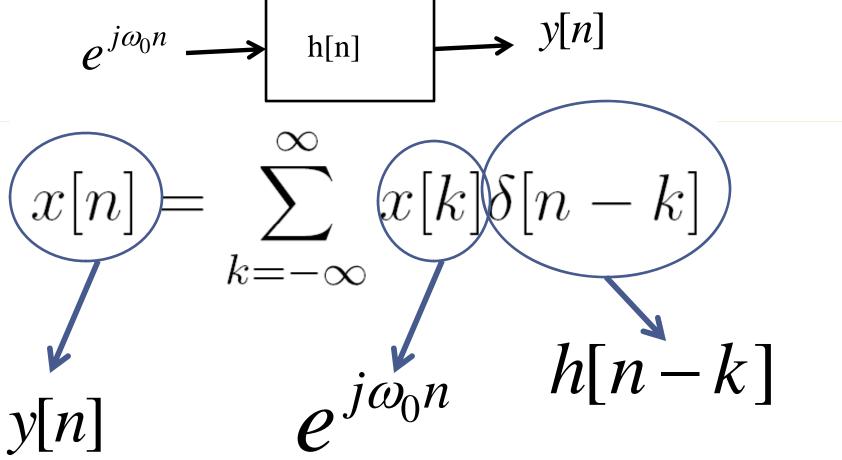
Thus Convolution !!











$$e^{j\omega_0 n} \longrightarrow h[n] \longrightarrow y[n]$$

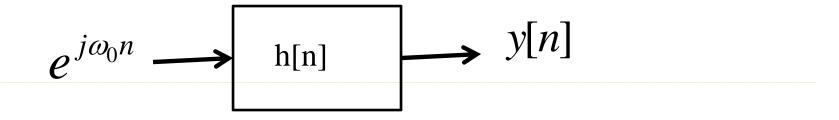
$$y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k]$$

$$e^{j\omega_0 n} \longrightarrow h[n] \longrightarrow y[n]$$

$$y[n] = \sum_{k=-\infty}^{\infty} x[n-k]h[k]$$

$$e^{j\omega_0 n} \longrightarrow h[n] \longrightarrow y[n]$$

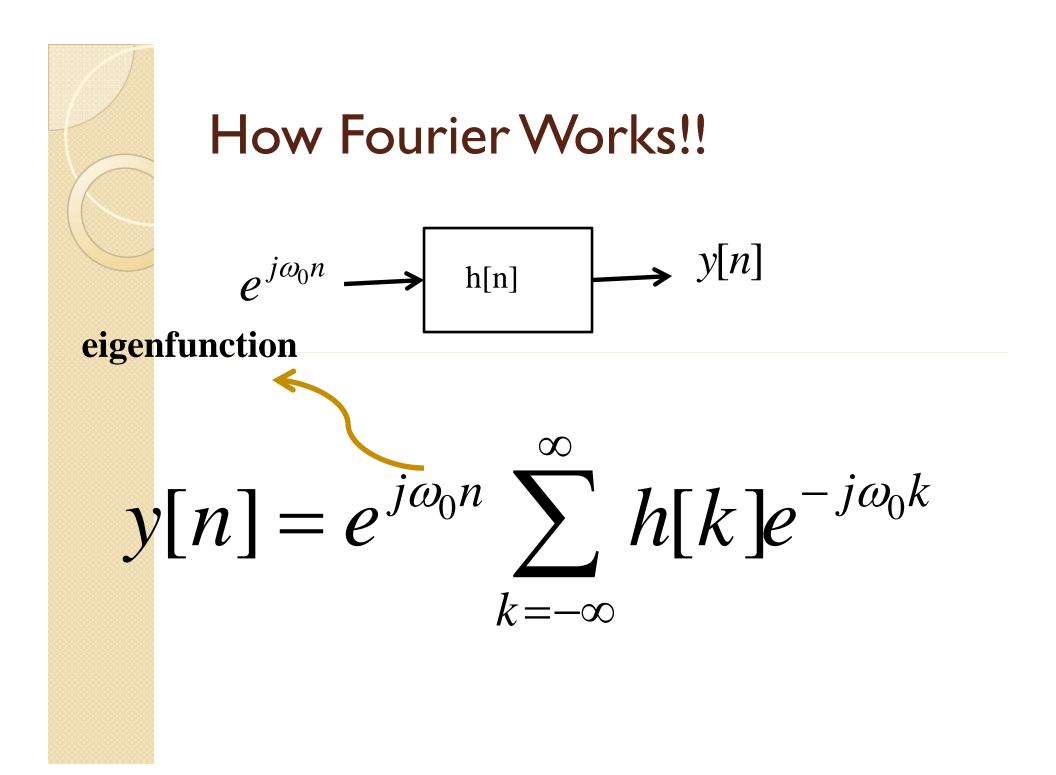
 ∞ $\sum e^{j\omega_0[n-k]}h[k]$ y[n] = $k = -\infty$

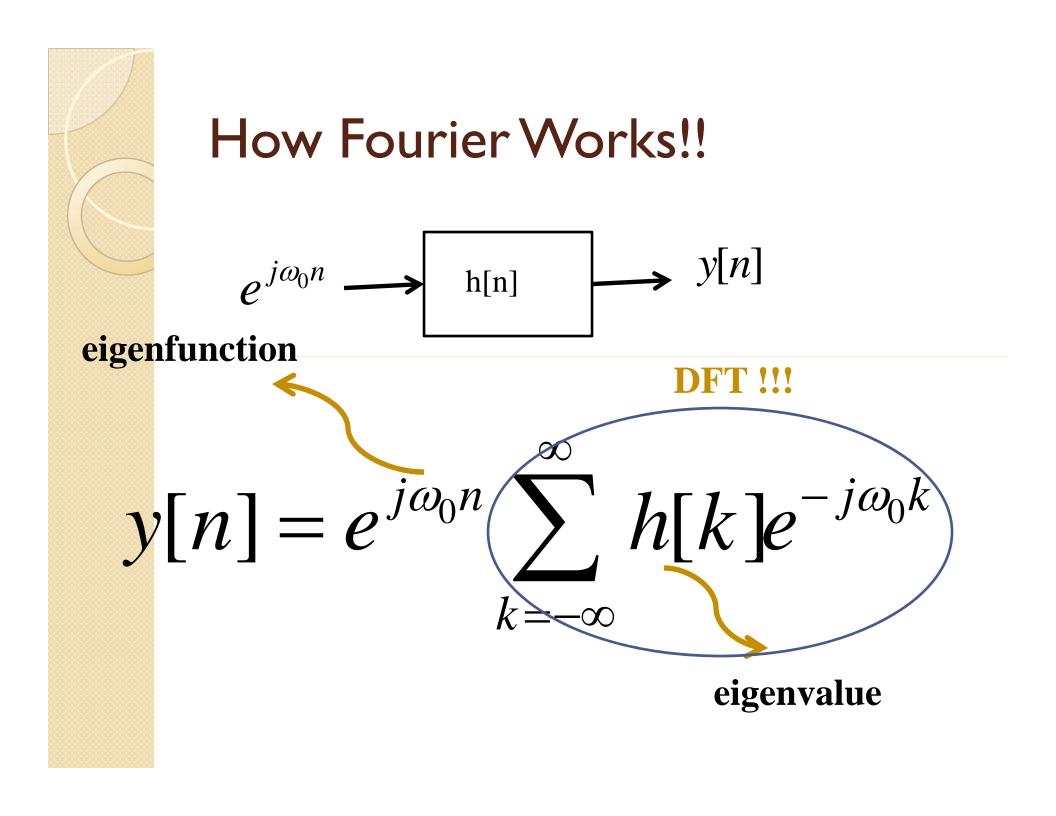


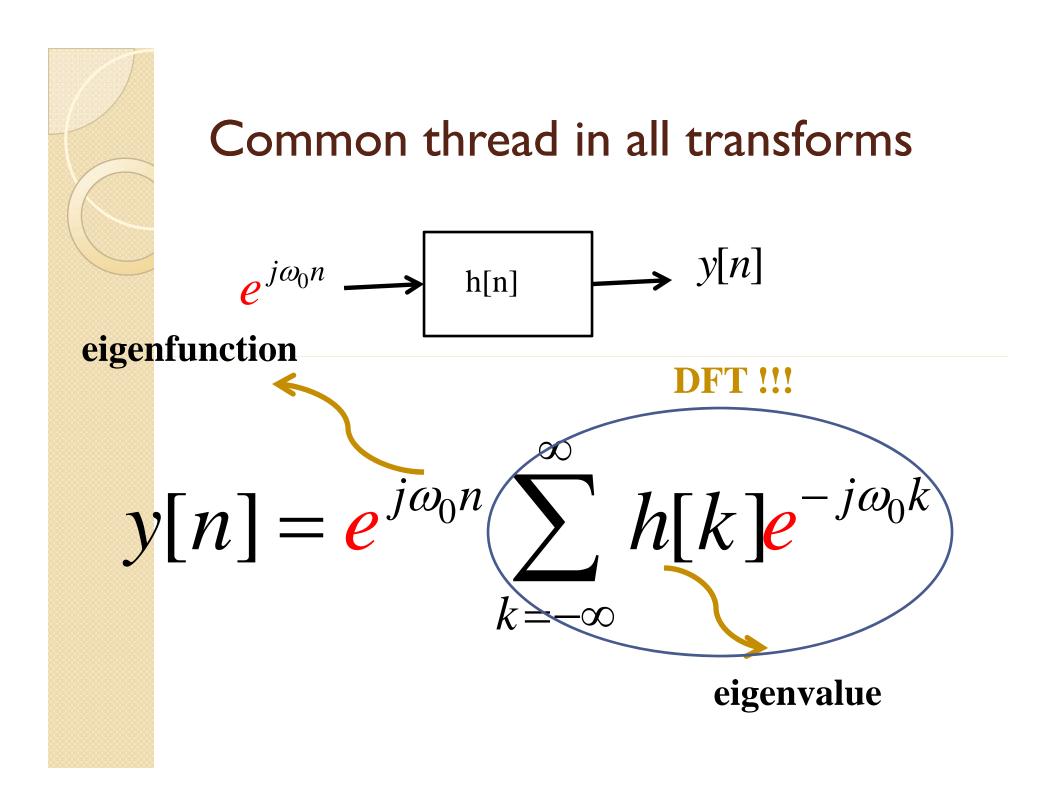
 ∞ $y[n] = \sum h[k]e^{j\omega_0 n}e^{-j\omega_0 k}$ $k = -\infty$

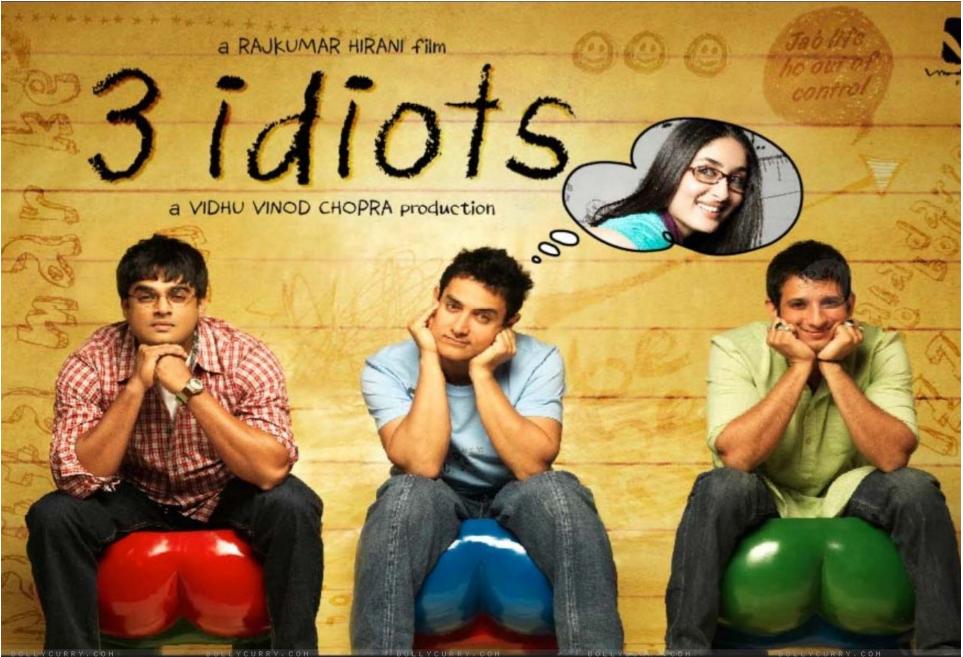
$$e^{j\omega_0 n} \longrightarrow h[n] \longrightarrow y[n]$$

$$y[n] = e^{j\omega_0 n} \sum_{k=-\infty}^{\infty} h[k] e^{-j\omega_0 k}$$



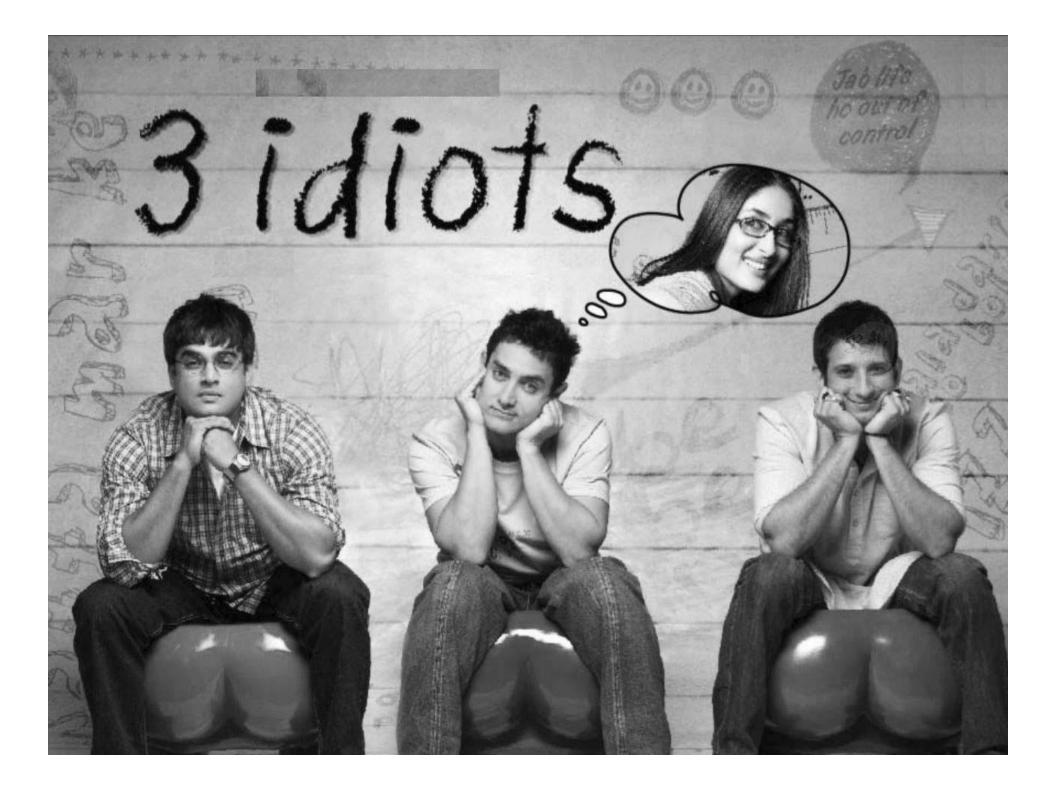


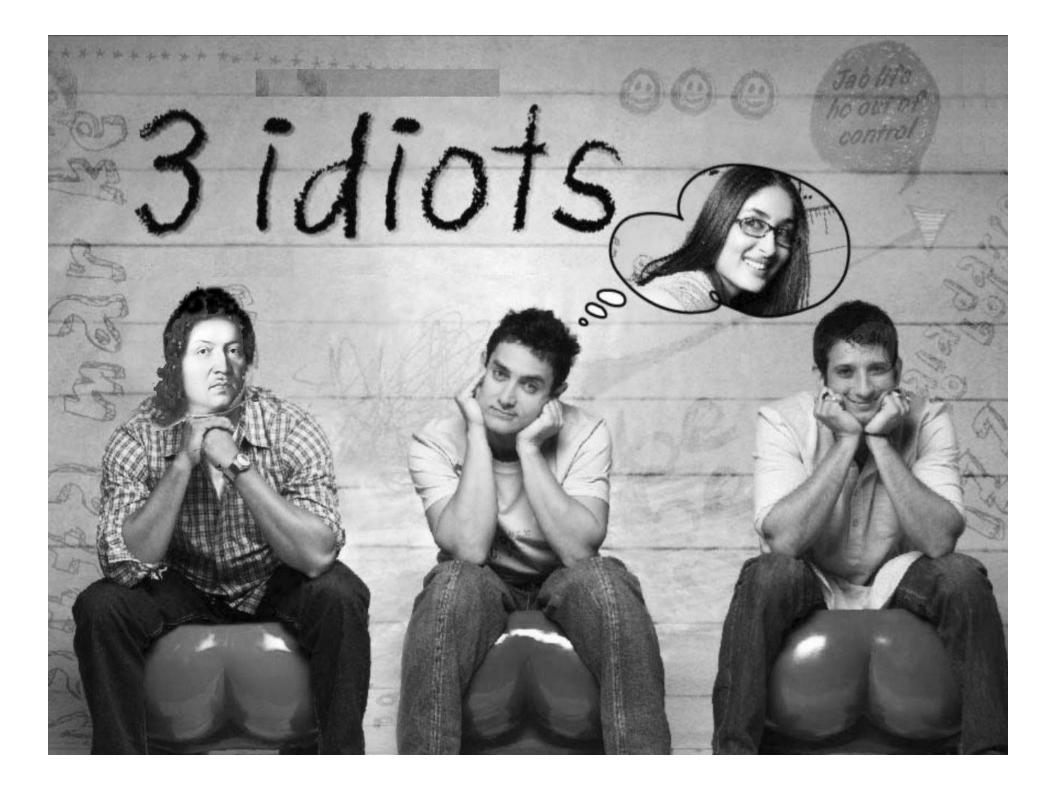


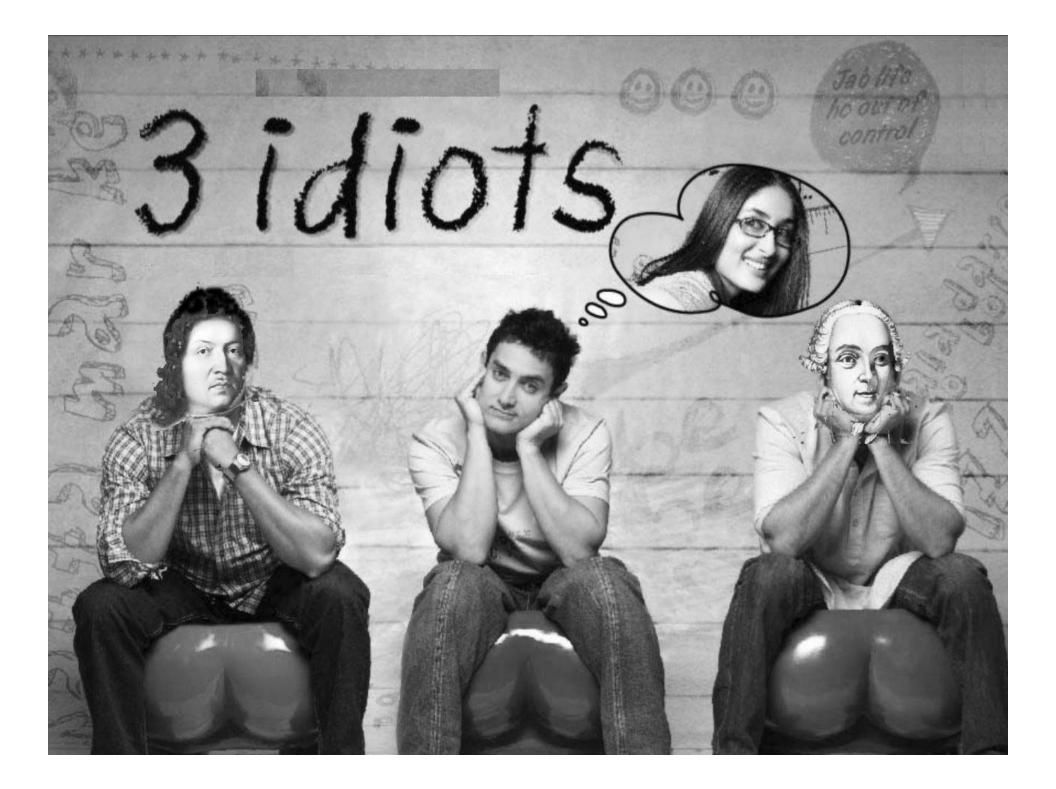


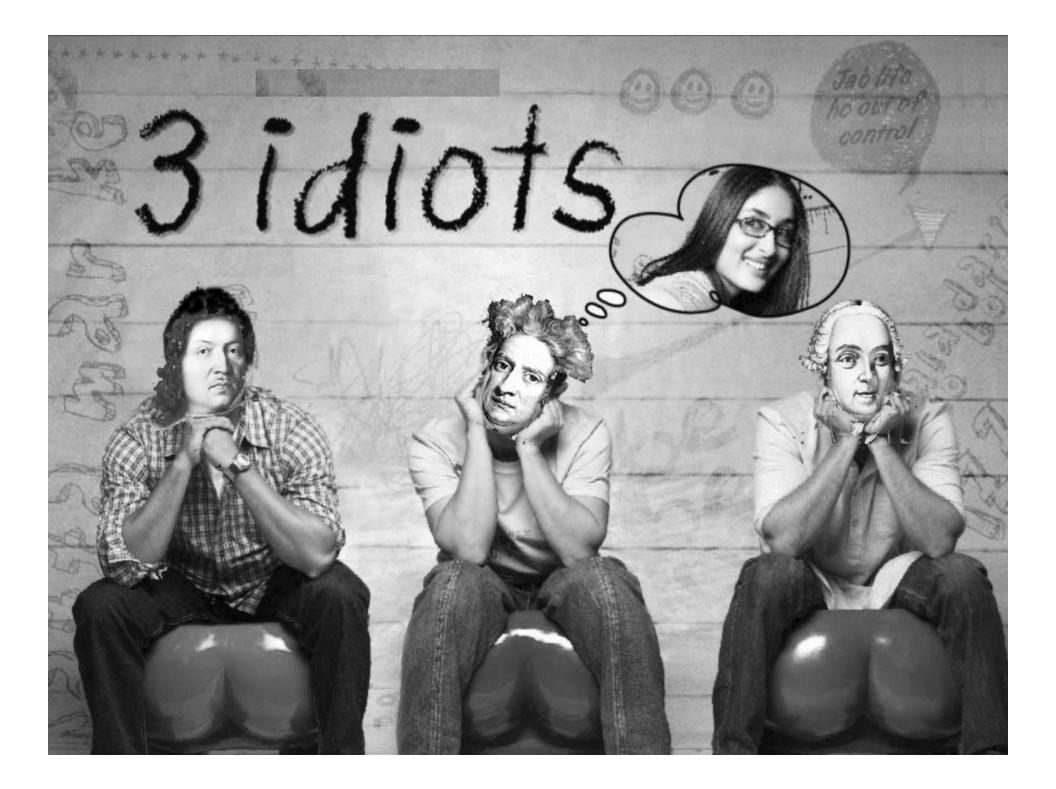
admissions open december 25

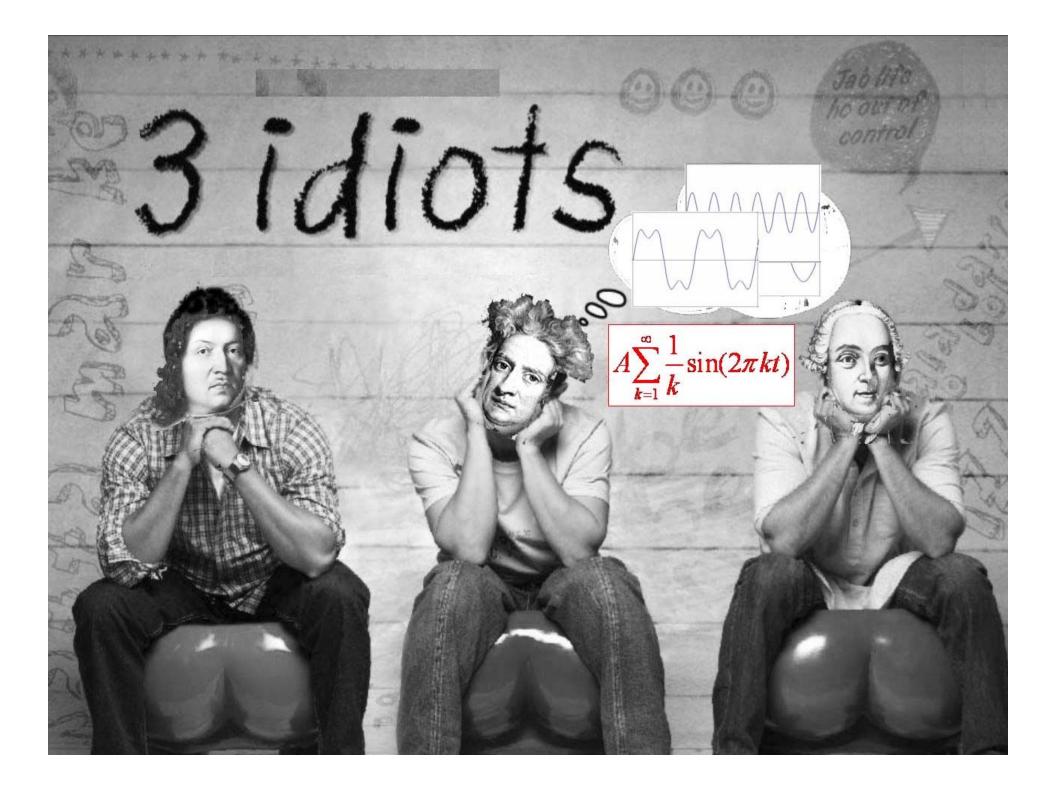
Join us at www.idiotsacademy.com









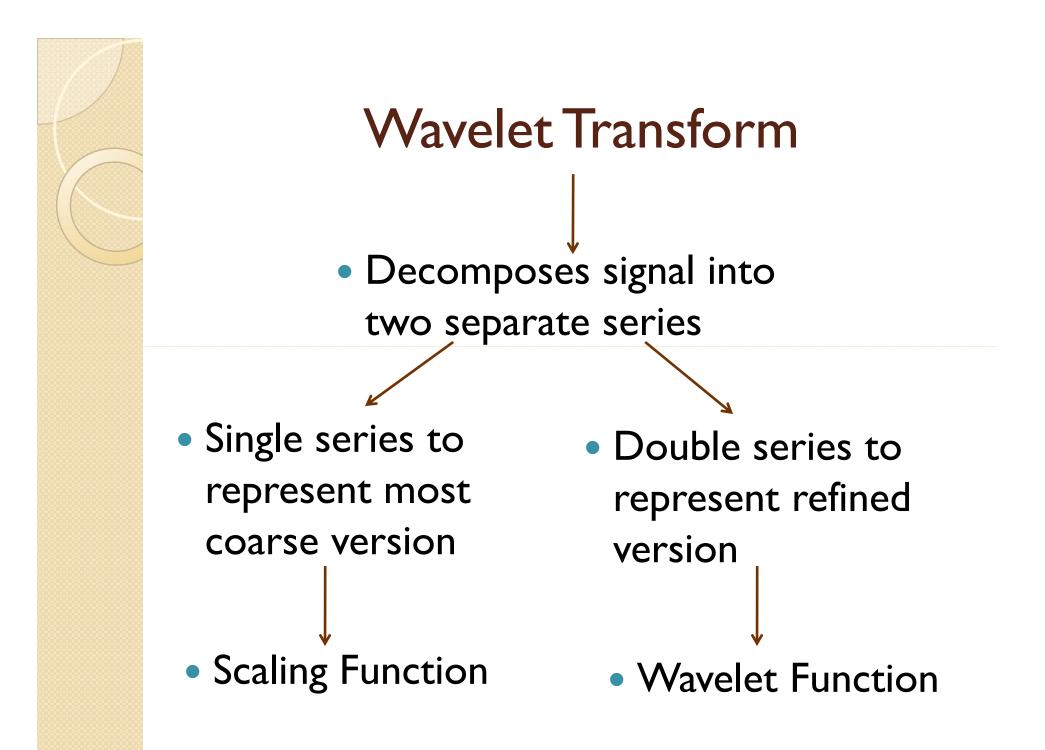


Story of 'e'

- Dr. Bernolli → Underwent an apparent accident to discover constant 'e'
- Dr. Euler → Gave the real meaning to constant 'e'
- Dr. Fourier → Used it for analyzing periodic / aperiodic functions/signals

Summary

• 'e' \rightarrow eigenvalue \rightarrow eigenfunction \rightarrow fourier $transform \rightarrow convolution \rightarrow LTI$ systems \rightarrow bandlimited signals \rightarrow aperiodic signals \rightarrow sampling theorem \rightarrow no aliases in reconstruction \rightarrow sparse representation \rightarrow inverse FT \rightarrow convolution \rightarrow phase changes marked as directional changes \rightarrow eigenfunction \rightarrow eigenvalue \rightarrow 'e' !!



Two Questions

 Aren't conventional methods to represent signals/function good enough?

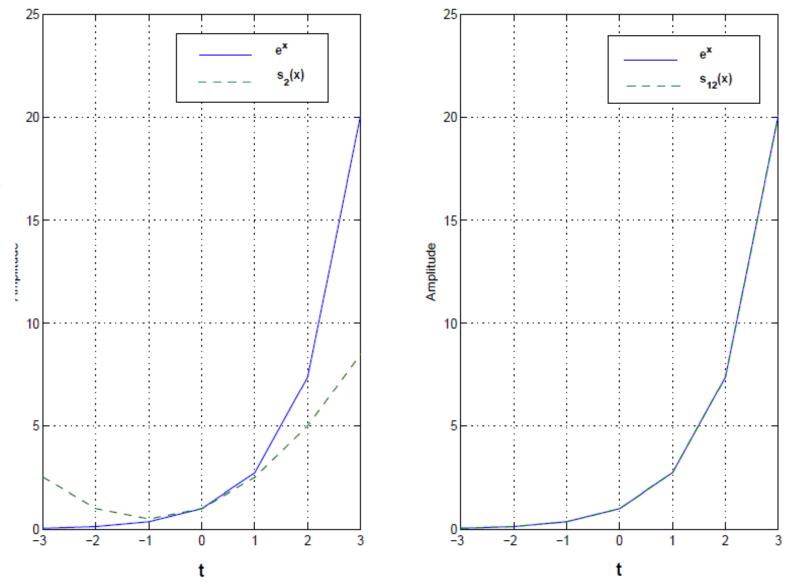
What is strikingly special about Wavelet representation?

Basic representation of signals

- Known for a long time
- E.g. Taylor series expansion at x0=0

$$e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!} = 1 + x + \frac{x^{2}}{2} + \dots + \frac{x^{n}}{n!} + \dots \qquad x \in \mathbb{R}$$

Decomposed pieces can be used for reconstruction



Cooperation of series

- In Taylor series, this cooperation to build better representation is 'rigid'
- We don't have freedom but to add large number of terms
- In Wavelet analysis scaling function and associated wavelet function makes the representation 'flexible'

Cooperation of series

- In Wavelet analysis the scale $\frac{1}{2^{j}}$ is dependent on refinement needed
- E.g. Use high value of j to determine spikes!
- Then, a translation $\tau_{j,k} = \frac{k}{2^{j}}$ can be used to focus on that part!

Fourier Series

Noteworthy advancement of Fourier series over Taylor is set {1, cos nx, sin nx}_{n=1}[∞] is orthogonal on (-π, π), whereas powers of Taylor series, in general, are not!

$$f(x) = a_0 + \sum_{k=1}^{\infty} a_k \cos kx + b_k \sin kx, \quad -\pi < x < \pi$$

$$a_0 = \frac{1}{2\pi} \int_{-\infty}^{\infty} f(x) dx,$$

$$a_n = \frac{1}{\pi} \int_{-\infty}^{\infty} f(x) \sin kx dx,$$

$$b_n = \frac{1}{\pi} \int_{-\infty}^{\infty} f(x) \cos kx dx$$

Fourier Series

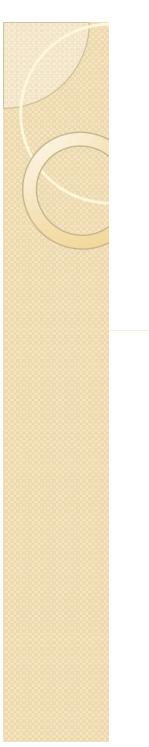
- Special relation exists between sine and cosine parts of Fourier series
- Similar special relation exists between scaling functions and wavelet series!!

$$f(x) = a_0 + \sum_{k=1}^{\infty} a_k \cos kx + b_k \sin kx, \quad -\pi < x < \pi$$

$$a_0 = \frac{1}{2\pi} \int_{-\infty}^{\infty} f(x) dx,$$

$$a_n = \frac{1}{\pi} \int_{-\infty}^{\infty} f(x) \sin kx dx,$$

$$b_n = \frac{1}{\pi} \int_{-\infty}^{\infty} f(x) \cos kx dx$$



Two Questions

 Aren't conventional methods to represent signals/function good enough?

 What is strikingly special about Wavelet representation?

Wavelet Transform: Speciality

- Scaling and Translation are indeed <u>Hallmarks</u> of Wavelet transform
- They lead us to MultiResolutioAnalysis (MRA) !!

Central Theme of MRA

- Piecewise constant approximations on UNIT intervals
- Filling in details → Zoom in OR
 Loosing details → Zoom out
- Increasing resolution → Zoom in OR
 Decreasing resolution → Zoom out
- Going arbitrarily close to the original signal!

Linear Space $V_0 = \begin{cases} x(t), \text{ such that} \\ x(.) \in L_2(\Re) \end{cases}$

- Space of all functions which are square integrable $\rightarrow L_2(\Re)$
- And x(.) is piecewise constant on all
]n,n+1[, n → integers
- Size of the interval $\rightarrow 2^0$

- Linear Space $V_0 = \begin{cases} x(t), \text{ such that} \\ x(.) \in L_2(\Re) \end{cases}$
- Space of all functions which are square integrable ${ \rightarrow } L_2(\Re)$
- And x(.) is piecewise constant on all]n,n+1[, n → integers
- Size of the interval $\rightarrow 2^0$
- Similarly we define V_1

Linear Space $V_1 = \begin{cases} x(t), \text{ such that} \\ x(.) \in L_2(\Re) \end{cases}$

- Space of all functions which are square integrable $\rightarrow L_2(\Re)$
- And x(.) is piecewise constant on all $]2^{-1}n, 2^{-1}n+1[, n \in \mathbb{Z}]$
- Size of the interval $\rightarrow 2^{-1}$
- Similarly we define V_2

Linear Space $V_{m} = \begin{cases} x(t), \text{ such that} \\ x(.) \in L_{2}(\Re) \end{cases}$

- Space of all functions which are square integrable $\rightarrow L_2(\Re)$
- And x(.) is piecewise constant on all

 $]2^{-m}n, 2^{-m}n+1[, n \in \mathbb{Z}]$

• Size of the interval $\rightarrow 2^{-m}$

Relationship

- As the spaces and spans are clear now
- Intuitionally, we observe a relationship between these spaces!

$$\ldots V_{-2} \subset V_{-1} \subset V_0 \subset V_1 \subset V_2 \ldots \ldots$$

• Intuitively we can see that as we move towards right, i.e. up the ladder, we are moving towards $L_2(\Re)$

Relationship

- As the spaces and spans are clear now
- Intuitionally, we observe a relationship between these spaces!

$$\ldots V_{-2} \subset V_{-1} \subset V_0 \subset V_1 \subset V_2 \ldots \ldots$$

• What happens when we move in left direction i.e. **down the ladder**?

Relationship

- As the spaces and spans are clear now
- Intuitionally, we observe a relationship between these spaces!

$$\dots V_{-2} \subset V_{-1} \subset V_0 \subset V_1 \subset V_2 \dots \dots$$

• The interval is going to get bigger and bigger, thus resolution shall be coarser and coarser

L2 norm

 If we require L2 norm to converge as we move in left direction, irrespective of m growing in negative direction, then,

 $\sum_{n=-\infty}^{\infty} |C_m(n)|^2 \text{ must be zero!!!}$

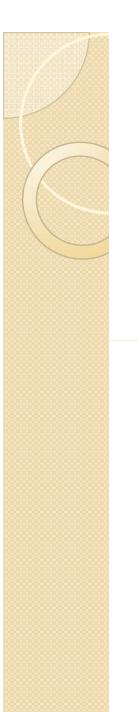
- That is $C_m(n) = 0, \forall n$
- Hence, movement towards the left implies movement towards the trivial subspace {0}

Moving downwards

• We can write

$$\bigcap_{m\in Z} V_m = \{0\}$$

- Trivial sub-space of L2!
- It is different than null sub-space



Moving upwards

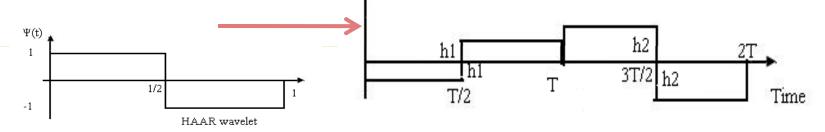
• We can write

$$\bigcup_{m\in Z} V_m = L_2(\mathfrak{R})$$

• With closure

Haar MRA – Idea of wavelets

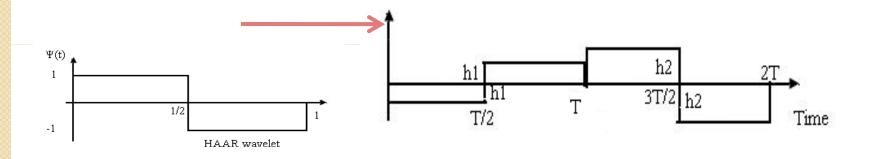
• We can construction this all using a single function!



$$f_1(t) - f_2(t) = h_1 \times \psi\left(\frac{t}{T}\right) + h_2 \times \psi\left(\frac{t-T}{T}\right)$$

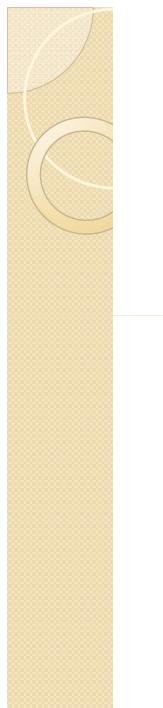
Haar MRA – Idea of wavelets

• We can construction this all using a single function! This will span W spaces

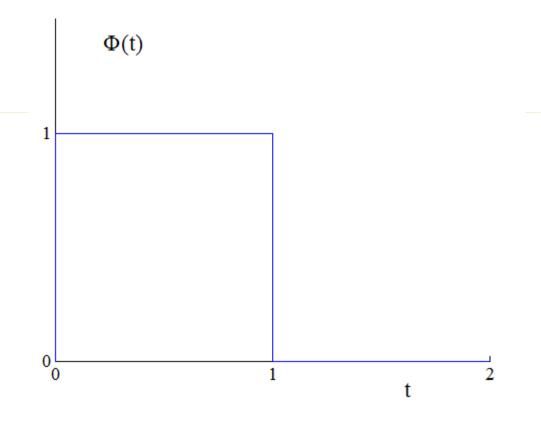


$$f_1(t) - f_2(t) = h_1 \times \psi\left(\frac{t}{T}\right) + h_2 \times \psi\left(\frac{t-T}{T}\right)$$

• What will span Vo and other spaces at that resolution??



This function !!



Scaling Function!

• Thus, any space V_m can be similarly constructed using a function $\Phi(2^m t)$

$$V_m = span\{\phi(2^m t - n)\}$$

 This will again generate ladder of subspaces!!

Axioms of MRA

• Ladder of subspaces of $\dots V_2 CV_1 CV_0 CV_1 CV_2$ are such that:

$$I. \quad \bigcup_{m \in Z} V_m \approx L_2(\mathfrak{R})$$

2.
$$\bigcap_{m \in Z} V_m = \{0\}$$

3. There exists a $\Phi(t)$ such that

$$V_m = span\{\phi(2^m t - n)\}$$

Axioms of MRA

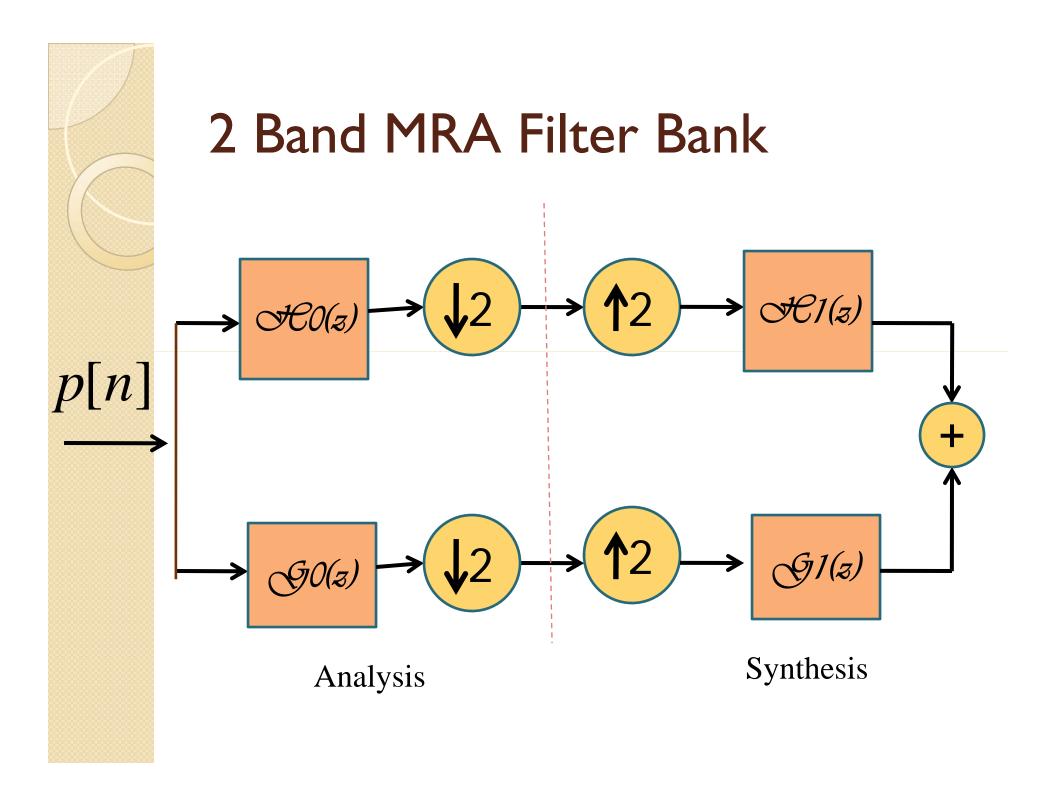
4. $\phi(t-n)_{n\in Z}$ is an orthogonal set 5. If $f(t) \in V_m$ then, $f(2^{-m}t) \in V_0, \forall m \in Z$ 6. If $f(t) \in V_0$ then, $f(t-n) \in V_0, \forall n \in Z$

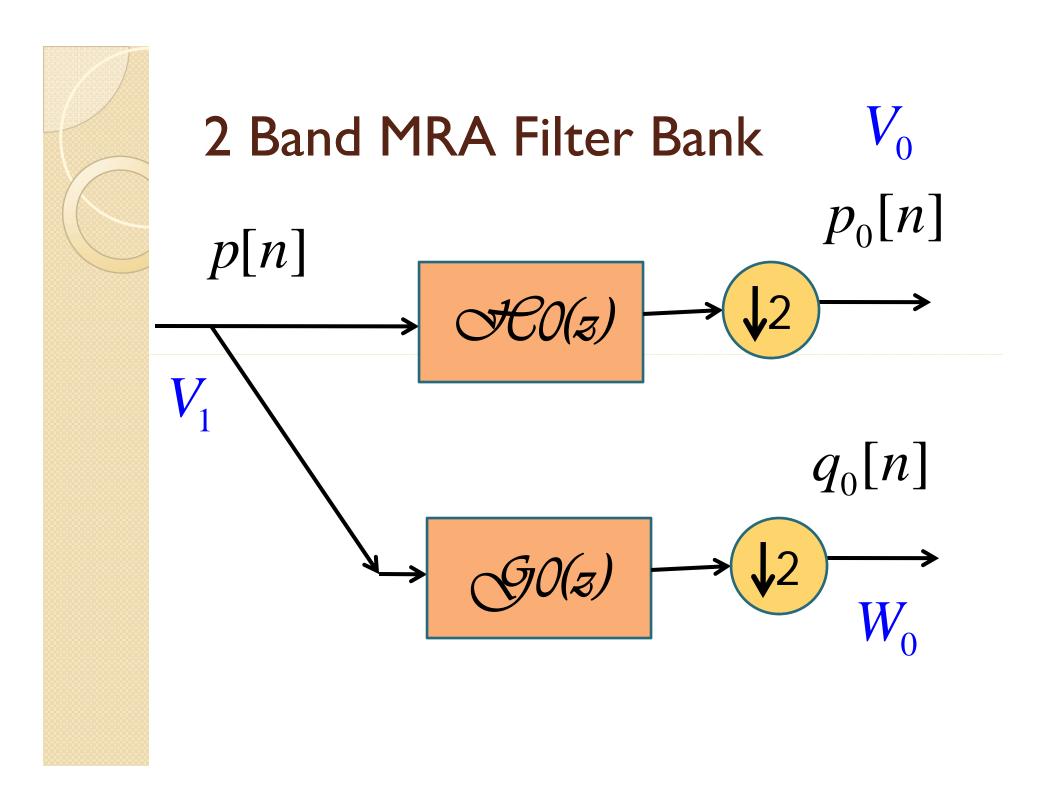
MRA Theorem

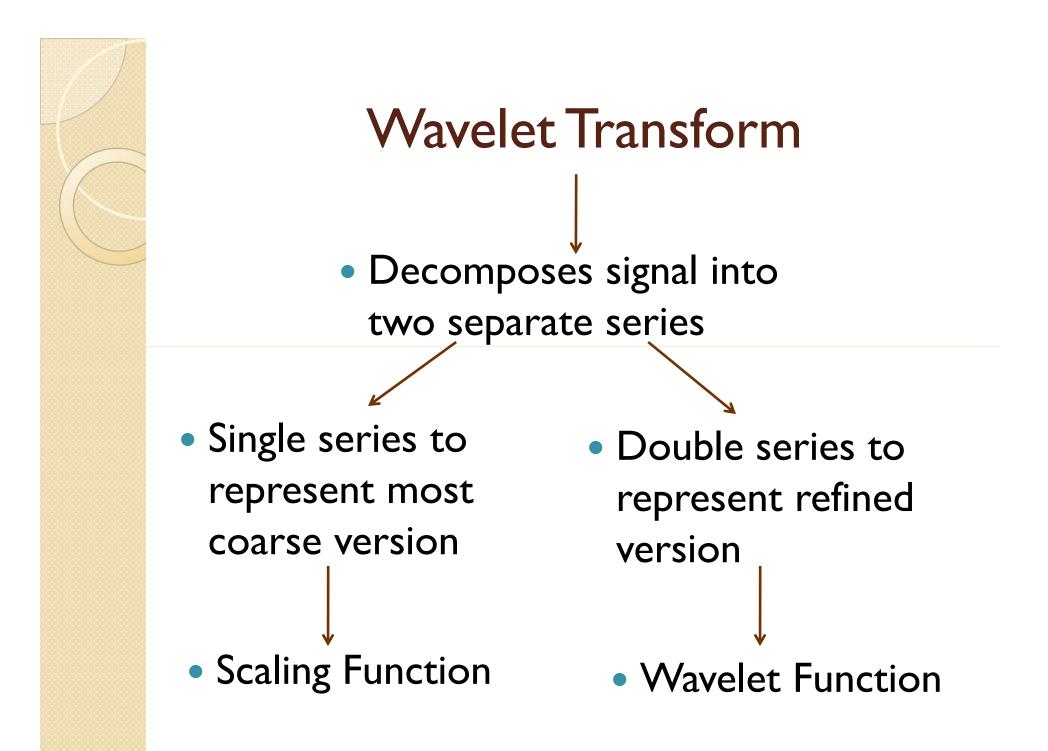
• Given these axioms, there exists a $\psi(.) \in L_2(\Re)$

so that
$$\Psi\{2^{-m}t-n\}_{m\in Z,n\in Z}$$

span $L_2(\mathfrak{R})$







Application

- Detecting hidden jump discontinuity
- Consider function

$$g(t) = \begin{cases} t, 0 \le t < \frac{1}{2} \\ t - 1, \frac{1}{2} \le t < 1 \end{cases}$$

• Clear jump at *t*=0.5

Application

- Detecting hidden jump discontinuity
- Let's integrate

$$h(t) = \int g(t)dt = \begin{cases} \frac{t^2}{2}, 0 \le t < \frac{1}{2} \\ \frac{t^2}{2} - t + \frac{1}{2}, \frac{1}{2} \le t < 1 \end{cases}$$

• Cusp jump at *t*=0.5

Application

- Detecting hidden jump discontinuity
- Let's integrate again

$$f(t) = \int h(t)dt = \begin{cases} \frac{t^3}{6}, & 0 \le t < \frac{1}{2} \\ \frac{t^3}{6} - \frac{t^2}{2} + \frac{t}{2} - \frac{1}{8}, & \frac{1}{2} \le t < 1 \end{cases}$$

• Appears smooth to eye

Wavelet Packet Analysis

 $W^{[2n]}(t) = \sqrt{2\sum h[k]} W^{[n]}(2t - k)$

 $W^{[2n+1]}(t) = \sqrt{2\sum g[k]} W^{[n]}(2t-k)$ k

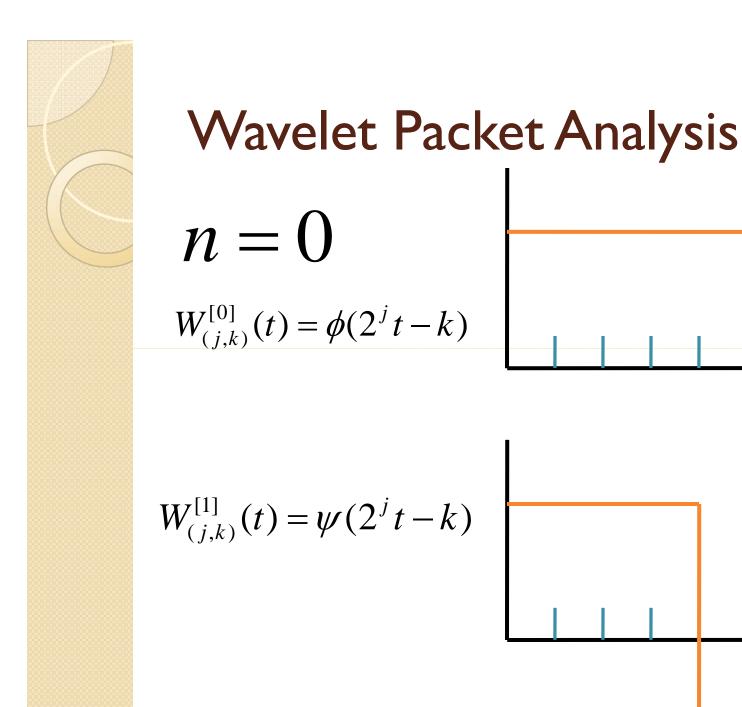
Wavelet Packet Analysis

$$W^{[2n]}(t) = \sqrt{2} \sum_{k} h[k] . W^{[n]}(2t - k)$$
$$h[k] = \left\{ \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}} \right\}$$

$$W^{[2n+1]}(t) = \sqrt{2} \sum_{k} g[k] . W^{[n]}(2t-k)$$
$$g[k] = \left\{ \frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}} \right\}$$

Wavelet Packet Analysis n = 0 $W_{(i,k)}^{[0]}(t) = \phi(2^{j}t - k)$

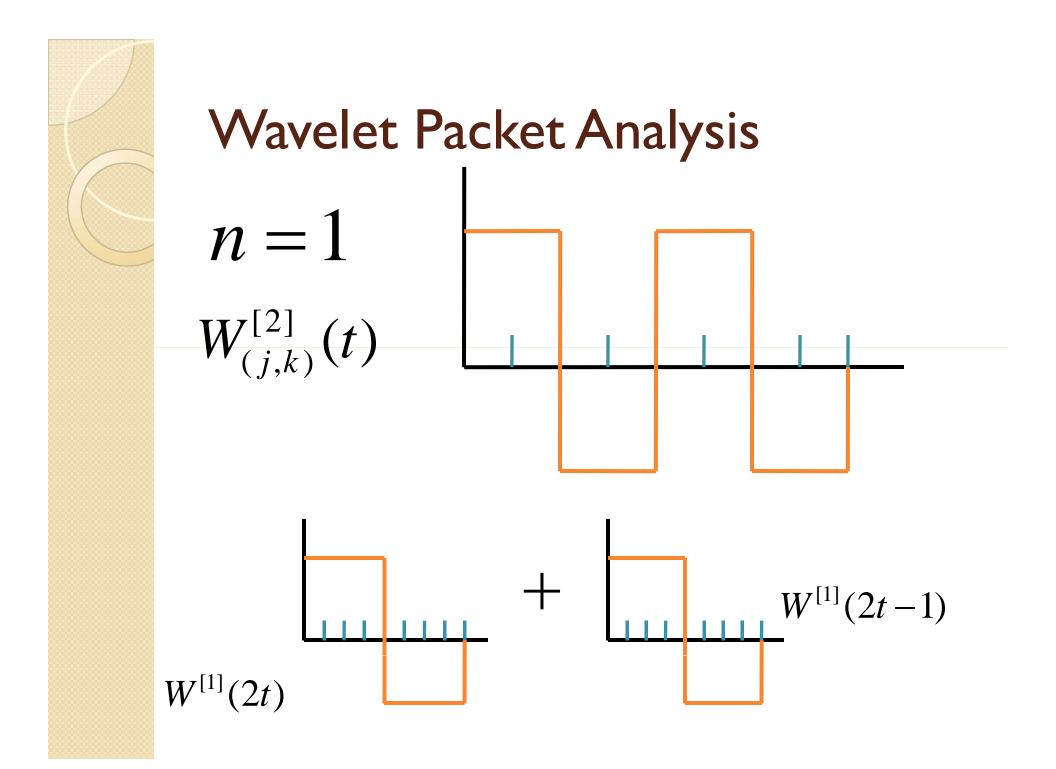
 $W^{[1]}_{(j,k)}(t) = \psi(2^{j}t - k)$

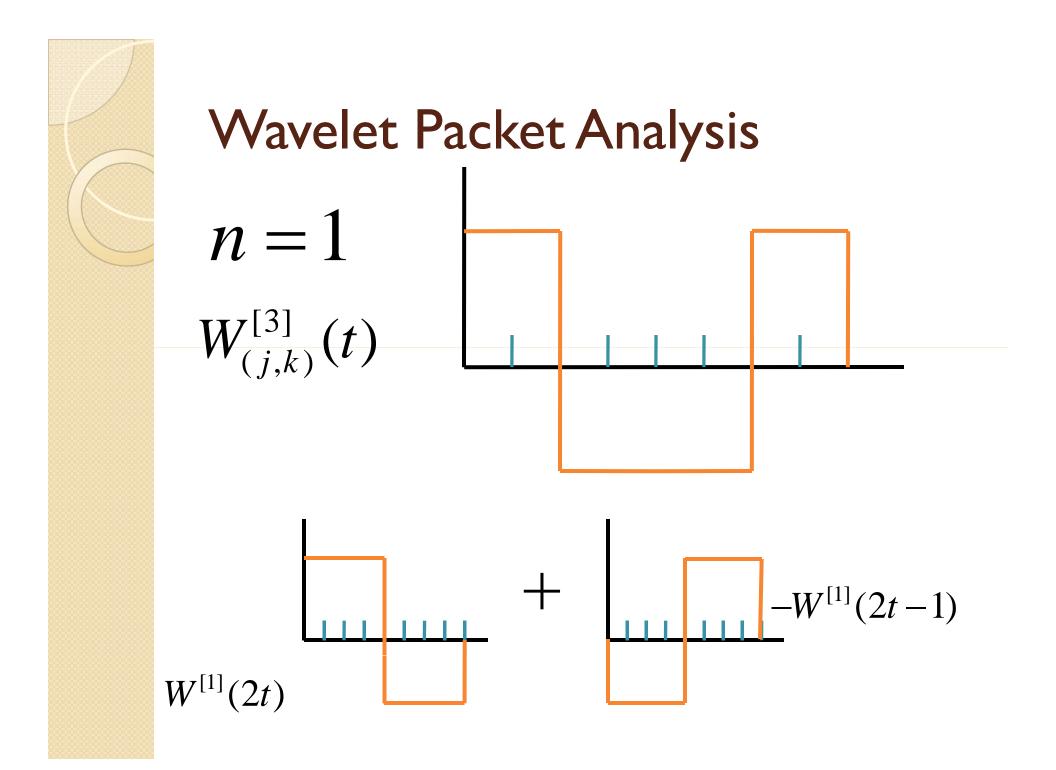


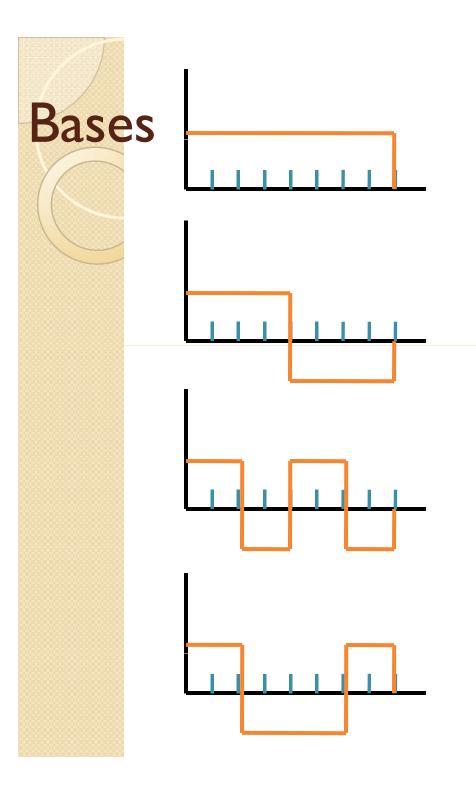
Wavelet Packet Analysis n = 1

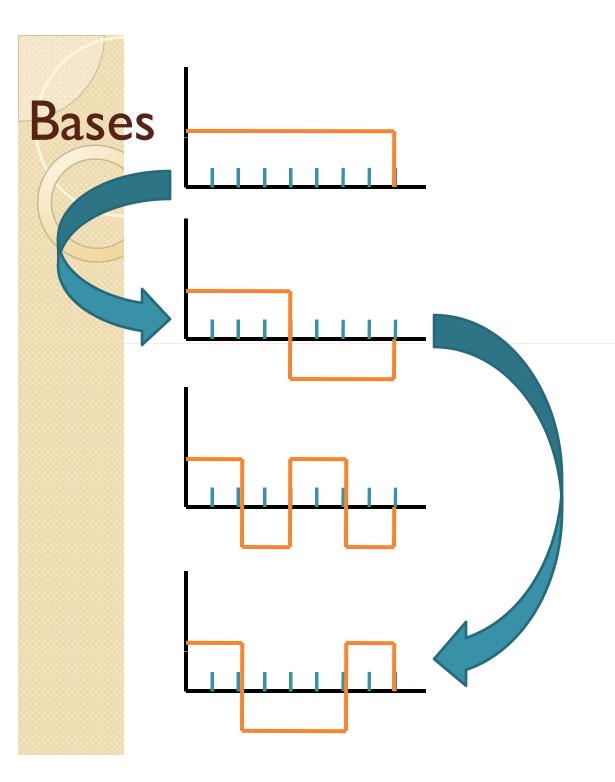
 $W^{[2]}(t) = \sqrt{2\sum h[k]} W^{[1]}(2t - k)$

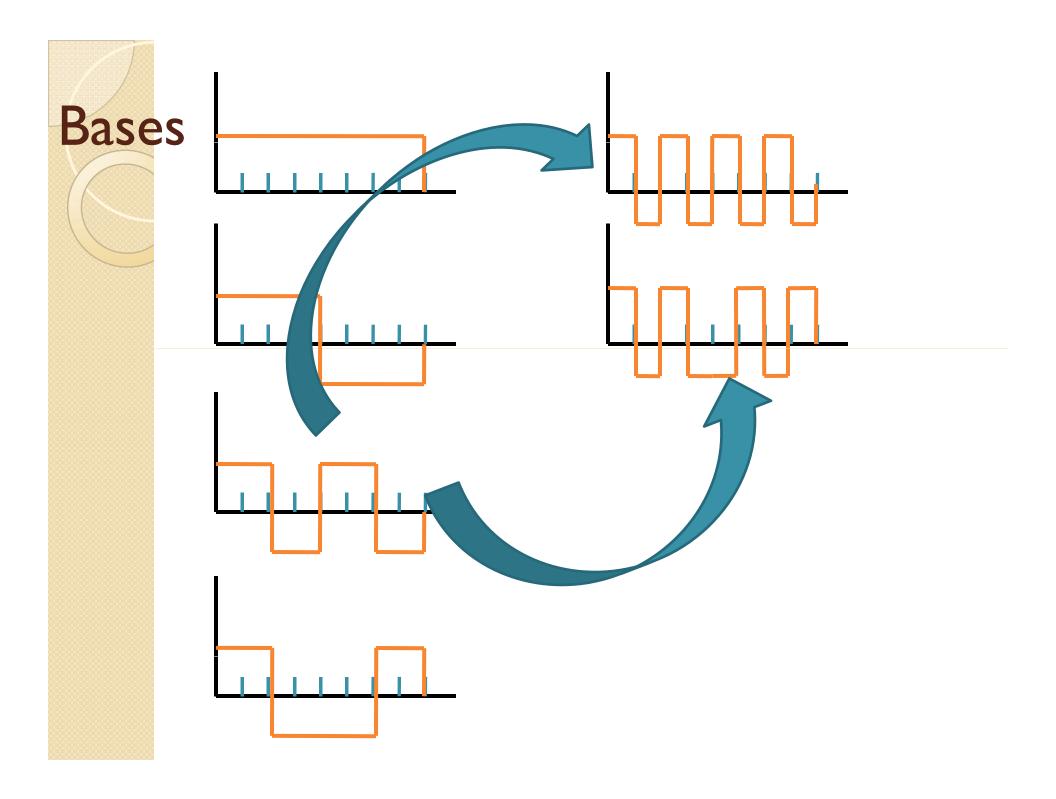
 $W^{[3]}(t) = \sqrt{2\sum g[k]} W^{[1]}(2t - k)$ k

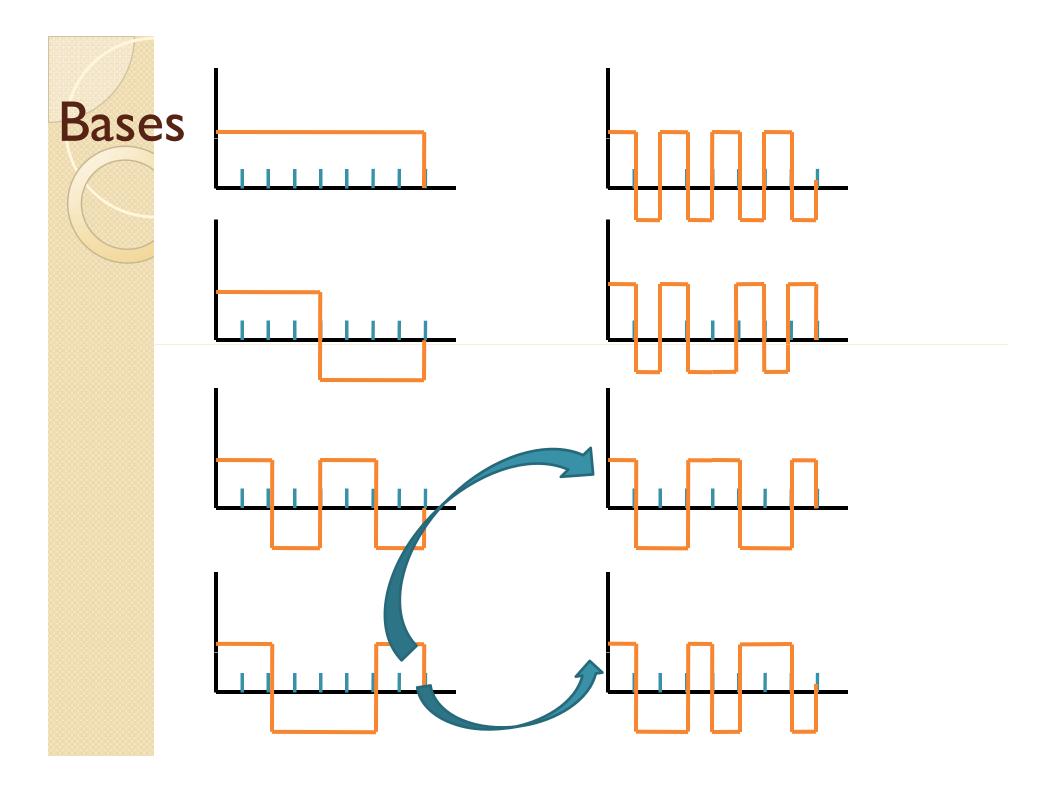


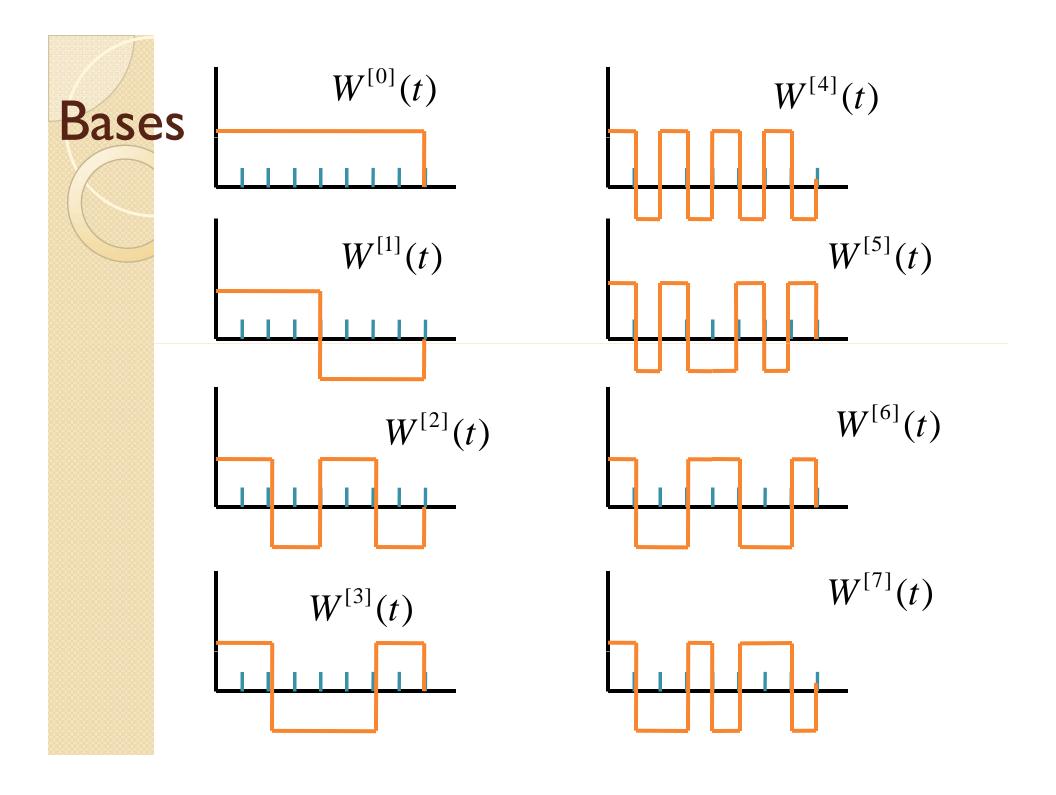












Wavelet Packet Analysis

$$W^{[2n]}(t) = \sqrt{2} \sum_{k} h[k] . W^{[n]}(2t - k)$$
$$h[k] = \left\{ \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}} \right\}$$

$$W^{[2n+1]}(t) = \sqrt{2} \sum_{k} g[k] W^{[n]}(2t-k)$$
$$g[k] = \left\{ \frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}} \right\}$$

Example

$x[n] = \{1, 0, -3, 2, 1, 0, 1, 2\} \in V_3$

- Show complete decomposition using Haar Wavelet Packets till V0
- Demonstrate complete reconstruction

Example

$$x[n] = \{1, 2, 3, 4, 5, 6, 7, 8\} \in V_3$$

- Show complete decomposition using Haar Wavelet Packets till V0
- Demonstrate complete reconstruction

$$x[n] = \{1, 2, 3, 4, 0, 6, 7, 8\} \in V_3$$

Wavelet Packet Analysis

$$W^{[2n]}(t) = \sqrt{2} \sum_{k} h[k] . W^{[n]}(2t - k)$$
$$h[k] = \left\{ \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}} \right\}$$

$$W^{[2n+1]}(t) = \sqrt{2} \sum_{k} g[k] . W^{[n]}(2t-k)$$
$$g[k] = \left\{ \frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}} \right\}$$

Coefficients

- Who gives us coefficients of scaling equation?
- Haar

$$\psi(t) = \begin{cases} 1, & 0 \le x < \frac{1}{2} \\ -1, & \frac{1}{2} \le x < 1 \\ 0, & \text{otherwise} \end{cases}$$
$$\phi(t) = \begin{cases} 1, & 0 \le x < 1 \\ 0, & \text{otherwise} \end{cases}$$

Properties of scaling coefficients 1. $\sum h_k = \sqrt{2}$ 2. $\sum h_{2k} = \frac{1}{\sqrt{2}}$ 3. $\sum h_{2k+1} = \frac{1}{\sqrt{2}}$

Properties of scaling coefficients

4.
$$\sum |h_k|^2 = 1$$

5.
$$\sum h_{k-2l}h_k = \delta_{l,0}$$

6.
$$\sum 2h_{k-2l}h_{k-2j} = \delta_{l,j}$$

Thank You! Questions ??