LECTURE 20 Date. 11-2THE TIME FREQUENCY

PLANE AND ITS
TILINGS

Time bandwidth

product

firme variance

(Tx) x Frequency

yoriance

(Tx) x Frequency

yoriance

Time bandwidt product for any SCR) > 0.25 $\chi(t) = e^{t^2}$ is an example of "optimal" More general optimal function +6t/2 C, Re(6) negative

Imp	rube m	Sow.	æ of
Cor	morsite	by	Im
= Con	white	nof	
	ゴー	Win	ユ と て う

Time bandwidth product of 1-141 Jime Variance: z(t) centre = 1七元は)に 1/x(t)1/2

12(4) 2 (1-も)は 2 1-七

$$\|x(t)\|_{2}^{2} =$$

$$2-(-1)^{2} + 2(-1)^{2} = 2(-1)^{2$$

11-200 2 (f(1-t) dt væringtetry pymæretry

$$= 2 \int (t^2 - 2t + t^2) dt$$

$$= 2 \int (t^2 - 2t^2 + t^4) dt$$

$$= 2\left\{\frac{t^{3}}{3} - \frac{2t}{4} + \frac{t^{5}}{5}\right\}_{0}^{1}$$

$$= 2\left\{\frac{1}{3} - \frac{2}{4} + \frac{1}{5}\right\}_{0}^{1}$$

$$= 2\left\{\frac{1}{3} - \frac{2}{4} + \frac{1}{5}\right\}_{0}^{1}$$

$$= 2.\left\{\frac{1}{3} - \frac{1}{2} + \frac{1}{5}\right\}$$

$$= 2.\frac{10 - 15 + 6}{2 \times 15} = \frac{1}{15}$$

Time variance

$$= \frac{1/15}{33} = \frac{3}{15}$$

$$= \frac{3}{15} = \frac{3}{15}$$

$$= \frac{3}{15} = \frac{3}{15}$$

Frequency Variance

= \[\frac{d\pi(t)}{dt} \]_2 11x4)

一个是一 12/1 + 12/1

12/2= Frequency-variance Fine bandwidth broduct = 0.1 X 3 Time. Frequency Variance variance (=0.3)

Exercise (2): Obtain the fine Gandwidt product of this impulse

1 Smith)

Kingth Foreign Washington **一>ヒ** > as a consequence of formiet duality.

For the function (Sm At) 2, timesiana (Bt)2 = frequences variance of variance

requency = time Variance 41 > Time bandwidth product = 0.3

The time bandwidth product is invariant to Fourier transformation

trom this example, we pel: it is pressible to have two functions, one compactly supported and one NOT with the a SAME JX TX "Time-Frequency
"Plane"
Frequency
Frequency
The Hime

"Occupancy of sut) = 2(R) in this time-frequency Tota-√n -- ' Time Fresher

Uncertainty Principle: Rectangle area Cannot le smaller Kan 2025 4055 = 4x0.5 = 4x0.25 "Tiling" the Time frequency blane: Covering this plane with rectangular "tiles" corresponding tions to puch functions

Take any other function to be analyzed:

y(t)

"Tool" function
= x(t) to metra

+(y(t) x(t) dt)

From Paseval's theorem = 1/Y(n) x(n) ds2 "Chirp function = Sin Det).t "instantanuoperary Fry Fry Time

Time

The constant