WAVELETS AND MULTIRATE DIGITAL SIGNAL PROCESSING Lecture 43: Tutorial on Uncertainty Product Prof.V.M.Gadre, EE, IIT Bombay

1 Uncertainty Product

There is a bound on simultaneous time and frequency localization. So essentially one cannot localize as much as one wants simultaneously in time and frequency.
One can define for time centered function $x(t)$, time variance

$$
\sigma_{t}^{2}(x)=\frac{\|t x(t)\|_{2}^{2}}{\|x(t)\|_{2}^{2}}
$$

Recall meaning of time center, time center

$$
t_{0}=\int \frac{t|x(t)|^{2}}{\|x(t)\|_{2}^{2}} d t
$$

By time centered, we mean $t_{0}=0$.
Similarly for frequency, frequency center or frequency mean

$$
\Omega_{0}=\int \frac{\Omega|\widehat{x}(\Omega)|^{2}}{\|\widehat{x}(\Omega)\|_{2}^{2}} d \Omega
$$

By frequency centered, we mean $\Omega_{0}=0$.
Analogous to time variance, for frequency centered function $\widehat{x}(\Omega)$ frequency variance

$$
\sigma_{\Omega}^{2}(x)=\frac{\|\Omega \widehat{x}(\Omega)\|_{2}^{2}}{\|\widehat{x}(\Omega)\|_{2}^{2}}
$$

If function is not time centered and frequency centered then one need to take second moment around respective centers.
For an $L_{2}(\mathbb{R})$ function the uncertainty product i.e. product of time and frequency variance is lower bounded by 0.25 .

$$
\sigma_{t}^{2}(x) \cdot \sigma_{\Omega}^{2}(x) \geq \frac{1}{4}
$$

Example 1. Calculate uncertainty product of $e^{-|t|}$ for all t.
Sol. First we need to verify if the function is $L_{2}(\mathbb{R})$ and check if it is centered in time and frequency.

$$
\begin{aligned}
\|x(t)\|_{2}^{2} & =\int_{-\infty}^{+\infty}|x(t)|^{2} d t \\
\|x(t)\|_{2}^{2} & =2 \int_{0}^{+\infty} e^{-2 t} d t
\end{aligned}
$$

$$
\|x(t)\|_{2}^{2}=1
$$

From the sketch of $x(t)$ one can clearly say that it is symmetric about $t=0$ and is a real and even function of t. Since it real and even function in time domain it should have real and even fourier transform too.
So obviously the function $x(t)$ is time and frequency centered.

Time variance σ_{t}^{2} :

$$
\sigma_{t}^{2}(x)=\frac{\int_{-\infty}^{+\infty} t^{2}|x(t)|^{2} d t}{\int_{-\infty}^{+\infty}|x(t)|^{2} d t}=2 \int_{0}^{+\infty} t^{2} e^{-2 t} d t=\frac{1}{2}
$$

Frequency variance σ_{Ω}^{2} :

$$
\begin{aligned}
\sigma_{\Omega}^{2}(x) & =\frac{\|\Omega \widehat{x}(\Omega)\|_{2}^{2}}{\|\widehat{x}(\Omega)\|_{2}^{2}} \\
\sigma_{\Omega}^{2}(x) & =\frac{\|j \Omega \widehat{x}(\Omega)\|_{2}^{2}}{\|\widehat{x}(\Omega)\|_{2}^{2}}
\end{aligned}
$$

By applying Parseval's Theorem it becomes

$$
\sigma_{\Omega}^{2}(x)=\frac{\left\|\frac{d x(t)}{d t}\right\|_{2}^{2}}{\|x(t)\|_{2}^{2}}
$$

Now

$$
x(t)=e^{-|t|}
$$

So

$$
\begin{gathered}
\left\|\frac{d x(t)}{d t}\right\|_{2}^{2}=\|x(t)\|_{2}^{2} \\
\sigma_{\Omega}^{2}(x)=1
\end{gathered}
$$

Uncetrtainty Product:

$$
\begin{gathered}
\sigma_{t}^{2}(x) \cdot \sigma_{\Omega}^{2}(x)=\frac{1}{2} * 1 \\
\sigma_{t}^{2}(x) \cdot \sigma_{\Omega}^{2}(x)=0.5(>0.25) \\
43-2
\end{gathered}
$$

Example 2. Calculate uncertainty product of raised cosine function.

Sol.

$$
\begin{aligned}
x(t) & =1+\cos t & & -\pi<t<\pi \\
& =0 & & \text { otherwise }
\end{aligned}
$$

From the above figure it is clear that the function $x(t)$ is real and even, so it is already time and frequency centered. Since the function is real and even, hence

$$
\begin{aligned}
\|x(t)\|_{2}^{2} & =\int_{-\infty}^{+\infty}|x(t)|^{2} d t \\
& =2 \int_{0}^{+\infty}|x(t)|^{2} d t \\
& =2 \int_{0}^{\pi}(1+\cos t)^{2} d t \\
& =2 \int_{0}^{\pi}\left(1+\cos ^{2} t+2 \cos t\right) d t
\end{aligned}
$$

Consider

$$
\int\left(1+\cos ^{2} t+2 \cos t\right) d t=\int\left(1+\frac{1+\cos 2 t}{2}+2 \cos t\right) d t
$$

Now let us sketch $\cos t$ and $\cos 2 t$

From the above figure it is clear that they have zero integral over $] 0, \pi[$
So the above integral becomes

$$
\|x(t)\|_{2}^{2}=2 \int_{0}^{\pi}\left(1+\frac{1}{2}\right) d t=3 \pi
$$

Frequency variance σ_{Ω}^{2} :

$$
\sigma_{\Omega}^{2}(x)=\frac{\left\|\frac{d x(t)}{d t}\right\|_{2}^{2}}{\left\|x(t)_{2}^{2}\right\|}
$$

Now

$$
\begin{aligned}
& \frac{d}{d t} x(t)=\frac{d}{d t}(1+\cos t)=-\sin t \\
& \left\|\frac{d x(t)}{d t}\right\|_{2}^{2} \\
& =2 \int_{0}^{\pi} \sin ^{2} t d t \\
& \\
& =\int_{0}^{\pi}(1-\cos 2 t) d t \\
&
\end{aligned}
$$

So frequency variance $\sigma_{\Omega}^{2}=\frac{1}{3}$
Time variance σ_{t}^{2} :
We need

$$
\begin{aligned}
\int t^{2}|x(t)|^{2} d t & =\int t^{2}(1+\cos t)^{2} d t \\
& =\int t^{2}\left(1+\frac{1+\cos 2 t}{2}+2 \cos t\right) d t
\end{aligned}
$$

Let us consider the term

$$
\begin{gathered}
\int t^{2} \cos m t d t \\
=t^{2} \frac{\sin m t}{m}+2 t \frac{\cos m t}{m^{2}}-2 \frac{\sin m t}{m^{3}}
\end{gathered}
$$

Now our limit is 0 to π, therefore we do not need to look at the 'sin' term which are zero at $t=0$ and $t=\pi$. Again we do need terms containing ' t ' at $t=0$. We need only consider the term $\left.2 t \frac{\cos m t}{m^{2}}\right|_{0} ^{\pi}$
For $\mathrm{m}=1,\left.2 t \cos t\right|_{0} ^{\pi}=2 \pi \cos \pi=-2 \pi$
For $\mathrm{m}=2,\left.2 t \frac{\cos t}{4}\right|_{0} ^{\pi}=2 \pi \frac{\cos 2 \pi}{4}=0.5 \pi$
Putting these values in above equation

$$
\begin{aligned}
\int_{0}^{\pi} t^{2}\left(1+\frac{1+\cos 2 t}{2}+2 \cos t\right) d t & =\int_{0}^{\pi} 1.5 t^{2} d t+\int_{0}^{\pi} t^{2} \frac{\cos 2 t}{2} d t+2 \int_{0}^{\pi} t^{2} \cos t d t \\
& =\frac{\pi^{3}}{2}+\frac{\pi}{4}-4 \pi
\end{aligned}
$$

Time variance σ_{t}^{2}

$$
\sigma_{t}^{2}=\frac{2 \int_{0}^{\pi} t^{2}|x(t)|^{2} d t}{2 \int_{0}^{\pi}(1+\cos t)^{2} d t}
$$

$$
\sigma_{t}^{2}=\frac{\pi^{2}}{3}-\frac{5}{2}
$$

Uncertainty Product:

$$
\begin{gathered}
\sigma_{t}^{2}(x) \cdot \sigma_{\Omega}^{2}(x)=\left(\frac{\pi^{2}}{3}-\frac{5}{2}\right) * \frac{1}{3} \\
\sigma_{t}^{2}(x) \cdot \sigma_{\Omega}^{2}(x)=\frac{\pi^{2}}{9}-\frac{5}{6}(>0.25)
\end{gathered}
$$

