WAVELETS AND MULTIRATE DIGITAL SIGNAL PROCESSING Lecture 41: Tutorial-1 Prof. V.M. Gadre, EE, IIT Bombay

1 Tutorial Exercises

Consider the following two functions:

$$\begin{aligned} lclx_1(t) &= 1 - |t| & -1 \le t \le 1 \\ &= 0 & otherwise \end{aligned}$$
(1)

Q 1. Verify that $x_1(t)$ and $x_2(t)$ belong to $L_2(\mathbb{R})$. Also find their norms. **Ans.** We will find norms of $x_1(t)$ and $x_2(t)$ and show that they are finite.

norm squared of x_1 in $L_2(\mathbb{R}) =$

$$\int_{-\infty}^{\infty} |x_1(t)|^2 dt$$

from symmetry,

$$||x_1||_2^2 = 2\int_0^\infty (1-t)^2 dt = \frac{2}{3}$$

$$||x_1||_2 = \sqrt{\frac{2}{3}}$$

Similarly,

$$||x_2||_2^2 = \int_0^\infty (e^{-t})^2 dt = \frac{1}{2}$$
$$||x_1||_2 = \sqrt{\frac{1}{2}}$$

Since L_2 norm is finite for both functions, they belong to $L_2(\mathbb{R})$.

41 - 1

Q 2. Obtain the projections of x_1 and x_2 in the space V_0 in the Haar MRA.

Ans. First, let us do the exercise for function x_1 .

It is easy to see that non zero projections will only be there in]-1,1[and by symmetry, projection of $x_1(t)$ in]-1,0[= projection of $x_1(t)$ in]0,1[= average of function in each of the intervals which is equal to

$$\int_0^1 (1-t)dt = 0.5$$

We can plot this projection as shown in fig-1. We will denote it by $Proj_{V_0}x_1$.

Figure 1: Projection of x_1 in V_0

Now let us do the same exercise for function x_2 . Its projection will be non-zero in only positive half of real axis.

Consider the standard intervals of unit length]n,n+1[. Projection of x_2 in this interval will be

$$\int_{n}^{n+1} e^{-t} dt = e^{-n} (1 - e^{-1})$$

Thus, we get exponentially decaying series of constants as depicted in fig-2.

Figure 2: Projection of x_2 in V_0

To verify that this projection also belongs to $L_2(\mathbb{R})$, we will show finite value of $\int_{-\infty}^{\infty} |Proj_{V_0}x_1|^2 dt$

$$\int_{-\infty}^{\infty} |Proj_{V_0} x_1|^2 dt = \sum_{n=0}^{\infty} (e^{-n} (1 - e^{-1}))^2$$
(5)

(6)

$$= (1 - e^{-1})^2 \sum_{n=0}^{\infty} e^{-2n}$$
 (7)

(8)

$$= \frac{(1-e^{-1})^2}{(1-e^{-2})}$$
(9)

Hence, the projection also belongs to $L_2(\mathbb{R})$.

Q 3.Obtain the projections of the functions x_1 and x_2 on the space V_1 in the Haar MRA. Ans.We need standard intervals of lenth $2^{-1} = 0.5$ to get projections in space V_1 . By symmetry, We can evaluate only in]0,1[. In interval]0,0.5[

$$\frac{1}{\frac{1}{2}} \int_0^{0.5} (1-t)dt = 0.75$$

In interval]0.5,1[

$$\frac{1}{\frac{1}{2}}\int_{0.5}^{1}(1-t)dt = 0.25$$

This is denoted by $Proj_{V_1}x_1$ and is depicted in fig-3.

Figure 3: Projection of x_1 in V_1

To get the ideas of projections clear, we draw both $Proj_{V_1}x_1$ and $Proj_{V_0}x_1$ (shown in thick red line) on the same graph in fig-4.

Now, we can find the projection of x_1 in incremental subspace W_0 :

$$Proj_{W_0}x_1 = Proj_{V_1}x_1 - Proj_{V_0}x_1$$

This shown in fig-5. We can observe that

$$Proj_{W_0}x_1 = 0.25\psi(t) - 0.25\psi(t+1)$$

where $\psi(t)$ is Haar Wavelet function.

Now let's do the same for function x_2 .

In the interval]0.5n, 0.5(n+1)[where $n \in \mathbb{Z}$ and $n \ge 0$,

$$Proj_{V_1}x_2 = \frac{1}{2} \int_{0.5n}^{0.5(n+1)} e^{-t} dt$$

41 - 3

Figure 4: Projection of x_1 in V_1 and V_0 (shown in thick red line) in the same graph

Figure 5: Projection of x_1 in W_0

$$= 2e^{-\frac{n}{2}}(1 - e^{\frac{-1}{2}})$$

which is an exponential sequence. We can see that exponnential nature of function replicates itself in the projection.

Now we will find $Proj_{W_0}x_2$ in]n,n+1[. It will be a multiple of $\psi(t-n)$. The constant by which $\psi(t-n)$ denoted by d_n can be found as following:

 d_n = average of x_2 over]n,n+0.5[- average of x_2 over]n,n+1[

$$d_n = e^{-n} (1 - e^{\frac{-1}{2}}) - e^{-n} (1 - e^{-1})$$
$$d_n = e^{-n} (e^{-1} - e^{\frac{-1}{2}})$$

Therefore,

$$Proj_{W_0}x_2 = \sum_{n=0}^{\infty} d_n\psi(t-n)$$

For exponentially decaying functions, the projections on V_m ($m\epsilon\mathbb{Z}$) and the projections on W_m ($m\epsilon\mathbb{Z}$) are all exponentially decaying piecewise constants.

2 Self Evaluation Quizzes

Q 1. Show that d_n can also be obtained by $\langle x_2, \psi(t-n) \rangle$. Ans.

$$\langle x_2, \psi(t-n) \rangle = \int_n^{n+0.5} e^{-t} dt - \int_{n+0.5}^{n+1} e^{-t} dt$$

= $e^{-n} - 2e^{-(n+0.5)} + e^{-(n+1)}$

On rearrangement, we get the same value for d_n as obtained above in Question-3.