WAVELETS AND MULTIRATE DIGITAL SIGNAL PROCESSING
 Lecture 41: Tutorial-1
 Prof.V.M.Gadre, EE, IIT Bombay

1 Tutorial Exercises

Consider the following two functions:

$$
\begin{align*}
l c l x_{1}(t) & =1-|t| & & -1 \leq t \leq 1 \tag{1}\\
& =0 & & \text { otherwise } \tag{2}
\end{align*}
$$

$$
\begin{array}{rlrl}
l c l x_{2}(t) & =e^{-t} & t \geq 0 \\
& =0 & & \text { otherwise } \tag{4}
\end{array}
$$

Q 1. Verify that $x_{1}(t)$ and $x_{2}(t)$ belong to $L_{2}(\mathbb{R})$. Also find their norms.
Ans. We will find norms of $x_{1}(t)$ and $x_{2}(t)$ and show that they are finite.
norm squared of x_{1} in $L_{2}(\mathbb{R})=$

$$
\int_{-\infty}^{\infty}\left|x_{1}(t)\right|^{2} d t
$$

from symmetry,

$$
\begin{gathered}
\left\|x_{1}\right\|_{2}^{2}=2 \int_{0}^{\infty}(1-t)^{2} d t=\frac{2}{3} \\
\left\|x_{1}\right\|_{2}=\sqrt{\frac{2}{3}}
\end{gathered}
$$

Similarly,

$$
\begin{gathered}
\left\|x_{2}\right\|_{2}^{2}=\int_{0}^{\infty}\left(e^{-t}\right)^{2} d t=\frac{1}{2} \\
\left\|x_{1}\right\|_{2}=\sqrt{\frac{1}{2}}
\end{gathered}
$$

Since L_{2} norm is finite for both functions, they belong to $L_{2}(\mathbb{R})$.

Q 2. Obtain the projections of x_{1} and x_{2} in the space V_{0} in the Haar MRA.
Ans. First, let us do the exercise for function x_{1}.
It is easy to see that non zero projections will only be there in]-1,1[and by symmetry, projection of $x_{1}(t)$ in $]-1,0\left[=\right.$ projection of $x_{1}(t)$ in $] 0,1[=$ average of function in each of the intervals which is equal to

$$
\int_{0}^{1}(1-t) d t=0.5
$$

We can plot this projection as shown in fig-1. We will denote it by $\operatorname{Proj}_{V_{0}} x_{1}$.

Figure 1: Projection of x_{1} in V_{0}
Now let us do the same exercise for function x_{2}. Its projection will be non-zero in only positive half of real axis.
Consider the standard intervals of unit length $] \mathrm{n}, \mathrm{n}+1\left[\right.$. Projection of x_{2} in this interval will be

$$
\int_{n}^{n+1} e^{-t} d t=e^{-n}\left(1-e^{-1}\right)
$$

Thus, we get exponentially decaying series of constants as depicted in fig-2.

Figure 2: Projection of x_{2} in V_{0}
To verify that this projection also belongs to $L_{2}(\mathbb{R})$, we will show finite value of $\int_{-\infty}^{\infty}\left|\operatorname{Proj}_{V_{0}} x_{1}\right|^{2} d t$

$$
\begin{equation*}
\int_{-\infty}^{\infty}\left|\operatorname{Proj}_{V_{0}} x_{1}\right|^{2} d t=\sum_{n=0}^{\infty}\left(e^{-n}\left(1-e^{-1}\right)\right)^{2} \tag{5}
\end{equation*}
$$

$$
\begin{align*}
& =\left(1-e^{-1}\right)^{2} \sum_{n=0}^{\infty} e^{-2 n} \tag{7}\\
& \left.=\frac{\left(1-e^{-1}\right)^{2}}{\left(1-e^{-2}\right.}\right) \tag{8}
\end{align*}
$$

Hence, the projection also belongs to $L_{2}(\mathbb{R})$.

Q 3.Obtain the projections of the functions x_{1} and x_{2} on the space V_{1} in the Haar MRA. Ans.We need standard intervals of lenth $2^{-1}=0.5$ to get projections in space V_{1}.
By symmetry, We can evaulate only in $] 0,1[$.
In interval $] 0,0.5$ [

$$
\frac{1}{\frac{1}{2}} \int_{0}^{0.5}(1-t) d t=0.75
$$

In interval]0.5, 1 [

$$
\frac{1}{\frac{1}{2}} \int_{0.5}^{1}(1-t) d t=0.25
$$

This is denoted by $\operatorname{Proj}_{V_{1}} x_{1}$ and is depicted in fig-3.

Figure 3: Projection of x_{1} in V_{1}
To get the ideas of projections clear, we draw both $\operatorname{Proj}_{V_{1}} x_{1}$ and $\operatorname{Proj}_{V_{0}} x_{1}$ (shown in thick red line) on the same graph in fig-4.

Now, we can find the projection of x_{1} in incremental subspace W_{0} :

$$
\operatorname{Proj}_{W_{0}} x_{1}=\operatorname{Proj}_{V_{1}} x_{1}-\operatorname{Proj}_{V_{0}} x_{1}
$$

This shown in fig-5.
We can observe that

$$
\operatorname{Proj}_{W_{0}} x_{1}=0.25 \psi(t)-0.25 \psi(t+1)
$$

where $\psi(t)$ is Haar Wavelet function.
Now let's do the same for function x_{2}.
In the interval $] 0.5 \mathrm{n}, 0.5(\mathrm{n}+1)[$ where $n \in \mathbb{Z}$ and $n \geq 0$,

$$
\operatorname{Proj}_{V_{1}} x_{2}=\frac{1}{2} \int_{0.5 n}^{0.5(n+1)} e^{-t} d t
$$

Figure 4: Projection of x_{1} in V_{1} and V_{0} (shown in thick red line) in the same graph

Figure 5: Projection of x_{1} in W_{0}

$$
=2 e^{-\frac{n}{2}}\left(1-e^{\frac{-1}{2}}\right)
$$

which is an exponential sequence. We can see that exponnential nature of function replicates itself in the projection.
Now we will find $\operatorname{Proj}_{W_{0}} x_{2}$ in $] \mathrm{n}, \mathrm{n}+1$ [. It will be a multiple of $\psi(t-n)$. The constant by which $\psi(t-n)$ denoted by d_{n} can be found as following:
$d_{n}=$ average of x_{2} over $] \mathrm{n}, \mathrm{n}+0.5\left[-\right.$ average of x_{2} over $] \mathrm{n}, \mathrm{n}+1[$

$$
\begin{gathered}
d_{n}=e^{-n}\left(1-e^{\frac{-1}{2}}\right)-e^{-n}\left(1-e^{-1}\right) \\
d_{n}=e^{-n}\left(e^{-1}-e^{\frac{-1}{2}}\right)
\end{gathered}
$$

Therefore,

$$
\operatorname{Proj}_{W_{0}} x_{2}=\sum_{n=0}^{\infty} d_{n} \psi(t-n)
$$

For exponentially decaying functions, the projections on $V_{m}(m \in \mathbb{Z})$ and the projections on W_{m} ($m \in \mathbb{Z}$) are all exponentially decaying piecewise constants.

2 Self Evaluation Quizzes

Q 1. Show that d_{n} can also be obtained by $\left\langle x_{2}, \psi(t-n)\right\rangle$.
Ans.

$$
\begin{gathered}
<x_{2}, \psi(t-n)>=\int_{n}^{n+0.5} e^{-t} d t-\int_{n+0.5}^{n+1} e^{-t} d t \\
=e^{-n}-2 e^{-(n+0.5)}+e^{-(n+1)}
\end{gathered}
$$

On rearrangement, we get the same value for d_{n} as obtained above in Question-3.

