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1 Introduction

In this lecture, we shall continue to discuss one more variant of the MRA. In the previous
lectures, we have studied the construction of a biorthogonal filter bank along with the example
of the 5/3 filter bank in JPEG 2000. In biorthogonal filter bank we essentially have the filters
of unequal lengths. With this approach we get the linear phase and symmetry in the impulse
response of the filters. Further, we could extend what we did in the Haar case to a piecewise
linear function. So, if we take 5/3 filter bank and if we look at the LPF of length 3, the filter
has an impulse response of (1 + z−1)2. It would give us the triangular function as the scaling
function. The disadvantage with the triangular function was that it was not orthogonal to all
its integer translates. It was orthogonal once you translate it by two units or more.

Now, in this lecture we shall take again the same (1 + z−1)2, the length 3 LPF that we have
seen in the 5/3 filter bank. But we shall deal with it in a slightly different way and that would
bring us to the idea of orthogonal MRA with splines where we need to make a compromise in
the nature of the scaling and the wavelet function that we construct and also in the nature of
the filter bank that we would build, that underlie this MRA. Eventually we will see that this
new approach would result in the filters of infinite length.

2 5/3 Filter Bank

If we look at the length-3 Low pass filter in the 5/3 filter bank, it essentially has 1
2
(1 + z−1)2

as the system function. We know that the corresponding scaling function is φ1(t) and it obeys
the dilation equation

φ1(t) =
1

2
φ1(2t) + φ1(2t− 1) +

1

2
φ1(2t− 2) (1)

φ1(t) has an appearance as shown in figure 1. Now our main problem and the reason why we
need it to go to an orthogonal filter bank as opposed to a bi-orthogonal filter bank was that this
scaling function is not orthogonal to its translates by unity. So, if we translate this by unity
and we take the dot product essentially between φ1(t) and φ1(t− 1), i.e, 〈φ1(t), φ1(t− 1)〉 and
〈φ1(t), φ1(t+ 1)〉 turns out to be nonzero. Hence we are not able to construct an orthogonal
MRA out of the function φ1(t).

Now we wish to construct orthogonal MRA from a function that look similar to φ1(t), or in
other word, out of a function that is piecewise linear. Can we build a multi-resolution analysis
with a piecewise linear function for φ and ψ? This is the question that we are trying to answer
in this lecture and to answer that question, we must relax the requirement for orthogonality.

3 Derivation of orthogonal MRA

If we look at the notion of orthogonality of φ(t) to its integer translates, we can express this
requirement in terms of the autocorrelation of φ i.e., the autocorrelation function of φ(t) at all
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Figure 1: Scaling function φ1(t)

the integers except at ‘0’ is 0 i.e., Rφφ(τ) = 0 for all τ ∈ Z except for τ = 0, where Rφφ(τ) is
the autocorrelation function of φ(t). This is the basic principle of a function being orthogonal
to its integer translates.

Let the scaling function be φ(t) and it is orthogonal to its integer translates φ(t − m),
where m ∈ Z. Essentially we mean that the autocorrelation function Rφφ(τ) when sampled
at τ = m,m ∈ Z (i.e., we sample at all integers, or at a sampling rate of 1) gives an impulse
sequence. Mathematically, the sequence is a discrete impulse sequence. When we sample it,
the Fourier Transform of the autocorrelation function gets aliased. Fourier Transform of the
autocorrelation function is | φ̂(Ω) |2 where φ̂(Ω) is the Fourier transform of the scaling function
φ(t). In other sense, we can say that Fourier Transform of the autocorrelation function is the
power spectral density of the scaling function in the frequency domain. Now sampling Rφφ(τ)

at τ = m for m ∈ Z, means summing up all the aliases of |φ̂(Ω)|2 in the Fourier domain. This
can be written as

K0

∞∑
k=−∞

| φ̂(Ω + 2πk) |2 , where K0 is a constant. (2)

Recall that when we sample a continuous function, its Fourier Transform shifts on the frequency
axis by every multiple of the sampling frequency and adds up all these translates or aliases.
In a way, the sequence Rφφ(τ) |τ=m is an impulse sequence, then its DTFT, which is shown in
equation 2, must be a constant. In order that the φ(t) is orthogonal to its integer translates, we
require that the quantity, sum of aliases of the power spectral density must be a constant. In
other words, K0

∑∞
k=−∞ | φ̂(Ω + 2πk) |2 is a constant. We shall call K0

∑∞
k=−∞ | φ̂(Ω + 2πk) |2

as the sum of translated spectra of φ(·). We shall abbreviate sum of translated spectra by STS.
STS(φ, 2π)(Ω) has Ω as primary argument and φ, 2π as secondary arguments. In general,

STS(φ, T )(Ω) = K0

∞∑
k=−∞

| φ̂(Ω + Tk) |2 (3)

With this little notational introduction, we take the same strategy as we did when we
relaxed the condition for the sum of dilated spectra. We know when we talk about discretizing
the scale we need to essentially relax the requirement of sum of dilated spectra to be a constant
to where it is between two positive constants. We take similar approach for the STS. There
exists relationship between relaxation of this requirement in the τ domain (or shift domain)
and the frequency domain. The φ1(t) is as shown in figure 1. We want the dot product of φ1(t)
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with its integer translates to be zero for all the translates. It is true for translates of 2 and
more than 2. But only for translation by 1 and -1, we are asking for relaxation here. The dot
product of φ with itself would have certain value and it is the energy of the function. And if we
take dot product of φ with its translates by 1 and -1, they are expected to have a smaller value.
So, the auto correlation of this function is not exactly an impulse but close to an impulse. This
means it is a non zero for very few values of around n = 0 and that manifests in the frequency
domain as the STS not being a constant but being between two positive constants. So, for
φ1(t), by looking the figure 1 we can observe that

Figure 2: Graphical representation of dot product between φ1(t) and φ1(t− 1)

Rφ1φ1(1) = Rφ1φ1(−1)

These quantities can be calculated as follows.
We find

∫∞
−∞ φ1(t)φ1(t − 1)dt. In fact, this quantity can be easily calculated by shifting both

the functions to left by 1 unit as shown in Figure 2. The above equation now becomes

Rφ1φ1(1) =
1

6

Similarly Rφ1φ1(0) can be calculated from the below equation.

Rφ1φ1(0) =

∫ 2

0

φ2
1(t)dt

=
2

3

Therefore,

Rφ1φ1(τ) |τ=m,m∈Z=

{
1

6
,
2

3
,
1

6

}
↑
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DTFT of Rφ1φ1(τ) |τ=m,m∈Z= 1
6
ejΩ + 2

3
+ 1

6
e−jΩ. Hence, STS becomes

K0

∞∑
k=−∞

| φ̂(Ω + 2πk) |2 =
1

6
ejΩ +

2

3
+

1

6
e−jΩ

=
2

3

(
1 +

1

2
cos Ω

)
(4)

As expected, this sum is always strictly positive and lies between two positive constants and
it can be observed that the constants are 1

3
and 1 i.e.,

1

3
≤ 2

3

(
1 +

1

2
cos Ω

)
≤ 1 (5)

So a relaxation of the requirement in time domain has also led to a corresponding relaxation
in the frequency domain. Now we can see the sum of translated spectrum lies between two
positive bounds. We could say even though φ1(t) by itself gives us a multi-resolution analysis,
the question arises can we construct an other function φ̃1(t) out of φ1(t) by using the sum of
translated spectrum in such a way that φ̃1(t) gives us an orthogonal MRA. So, let us define
φ̃1(t) in terms of its Fourier Transform as

ˆ̃φ1(Ω) =
φ̂1(Ω)

+
√
STS(φ1, 2π)(Ω)

(6)

Here denominator is between 1√
3

and 1. So, this division is a nonzero finite value. The

denominator STS(φ1, 2π)(Ω) exhibits an important property of periodicity with period 2π.

STS(φ, 2π)(Ω) = STS(φ, 2π)(Ω + 2π) ∀Ω

STS(φ, 2π)(Ω + 2π) =
∞∑

k=−∞

φ̂(Ω + 2π + 2πk)

=
∞∑

k=−∞

φ̂(Ω + 2π(k + 1)) (7)

As k runs from −∞ to ∞, k+ 1 also have the same limits. Hence, the summation in equation
7 becomes STS(φ, 2π)(Ω). Therefore STS(φ̃1, 2π)(Ω) becomes

STS(φ̃1, 2π)(Ω) =
∞∑

k=−∞

| φ̂1(Ω + 2πk) |2

STS(φ1, 2π)(Ω + 2πk)

=
1

STS(φ1, 2π)(Ω)

∞∑
k=−∞

| φ̂1(Ω + 2πk) |2

=
STS(φ1, 2π)(Ω)

STS(φ1, 2π)(Ω)

= 1

From the above result it is clear that STS(φ̃1, 2π)(Ω) is constant and is equal to one. Therefore,
we can say that the underlying continuous function φ̃1(t) is orthogonal to its integer translates.
To characterize φ̃1(t) lets consider its Fourier domain. We have,

ˆ̃φ1(Ω) =
φ̂1(Ω)

+
√
STS(φ1, 2π)(Ω)
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Substituting the value of STS(φ1, 2π)(Ω) from equation 4, we get

ˆ̃φ1(Ω) =
φ̂1(Ω)√

2
3
(1 + 1

2
cos Ω)

Expanding the above equation in the form of binomial expansion,

ˆ̃φ1(Ω) = φ̂1(Ω)

(
2

3

)− 1
2
(

1 +
1

2
cos Ω

)− 1
2

(8)

This equation is of the form (1 + λ)R, R ∈ R, we know that

(1 + λ)R = 1 +R.λ+
R(R− 1)

2!
λ2 +

R(R− 1)(R− 2)

3!
λ3 + . . . (9)

comparing the equations 8 and 9 and expanding equation 8, a typical pth term can be repre-
sented as follows

Kpλ
p = Kp(cos Ω)p

(
1

2

)p
(10)

We know that, (cosΩ)p = ( e
jΩ+e−jΩ

2
)p, using this result in equation 10 and expanding it we get

the final expression which looks like

ˆ̃φ1(Ω) =
∞∑

k=−∞

C̃ke
jΩkφ̂1(Ω) (11)

Now, from equation 11 we can find the Inverse DTFT of φ̃1(Ω) easily. We know that multipli-
cation by the term ejΩk in Fourier domain shifts the signal by k in time domain. Therefore,
φ̃1(t) turns out to be

φ̃1(t) =
∞∑

k=−∞

C̃kφ1(t+ k) (12)

From equation 12, φ̃1(t) turns out to be a linear combination of φ1(t) shifted by integer trans-
lates. When we shift a piecewise linear function by integer translates and add them we still
get a piecewise linear function. Hence, φ̃1(t) is a piecewise linear function.
In the next lectures we shall study the nature of C̃k and know how to construct an MRA out
of φ̃1(t) .
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