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Lecture 26: Proof of the Theorem of Dyadic MRA
Prof.V.M.Gadre, EE, IIT Bombay

1 Introduction

One way to interpret discretization of translation parameter is to raise issue of sampling of bandpass signal instead
of bandlimited signal. In the discretization of translation parameter in the space V, we are talking about band
limited function with band doubling each time around frequency zero. So sampling frequency is needed to be
doubled.

Ideal Bandpass reconstruction filters is having unrealizable impulse response. Wavelets is a way of bandpass
sampling and reconstruction practically. Under axioms of MRA can we extract a function ψ(t) which will allow
band-pass sampling?

2 Proof of the Theorem of Dyadic MRA in Time Domain

Consider the function f(t) in the incremental subspace W0. The characteristics of the function f(t) are:

• f(t) is orthogonal to every translate of φ(t) i.e. φ(t−m), where m ∈ Z.

• f(t−m) ∈ V1 and f(t) can be expressed in terms of φ(2t− n), where n ∈ Z.

Let f(t) =
+∞∑

n=−∞
f [n]φ(2t − n) where f [n] are the coefficients of expansion. We know that φ(t) ∈ V0 ⊂ V1. φ(t)

can be expanded in terms of φ(2t− n)

φ(t) =

+∞∑
n=−∞

h[n]φ(2t− n)

where h[n] is the low pass impulse response coefficient.

φ(t−m) =

+∞∑
n=−∞

h[n]φ(2t− 2m− n)

Using the orthogonality property,
〈f(t), φ(t−m)〉 = 0〈∑

n

f [n]φ(2t− n),
∑
l

h[l]φ(2t− 2m− l)
〉

= 0 ∀m

We now invoke the orthogonality of φ(·) with its own translates as

〈φ(2t− k1), φ(2t− k2)〉 =

∫ +∞

−∞
φ(2t− k1)φ(2t− k2)dt

Putting 2t = λ we get

〈φ(λ− k1), φ(λ− k2)〉 =
1

2

∫ +∞

−∞
φ(λ− k1)φ(λ− k2)dλ =

1

2
δ[k1 − k2]

Thus,

〈f(t), φ(t−m)〉 =
∑
n

∑
l

f [n]h[l]〈φ(2t− n), φ(2t− 2m− l)〉 = 0

The above term is nonzero only for n = 2m+ l.

〈f(t), φ(t−m)〉 =
1

2

∑
l

f [2m+ l]h[l]

We are essentially looking at the cross correlation of the sequences f [·] and h[·]. Cross correlation is often denoted
by:

rfh[p] =
∑
l

f [p+ l]h[l]
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Therefore, rfh[p]p=2m = 0 ∀ m ∈ Z i.e. the cross correlation of f [·] and h[·] evaluated at all even shifts is zero.
In Z-domain

rfh[p] −→ Rfh(z)

Rfh(z) +Rfh(−z) = 0

F (z)H(z−1) + F (−z)H(−z−1) = 0

F (z)

F (−z)
= −H(−z−1)

H(z−1)

F (z) = −Λ(z)H(−z−1) (1)

F (−z) = Λ(z)H(z−1) (2)

Putting z = −z in equation(1) we get,

F (−z) = −Λ(−z)H(z−1) (3)

Comparing equation(2) and (3) we have:

Λ(z) = −Λ(−z)
Λ(z) + Λ(−z) = 0

In terms of sequences, if Λ(z) is a Z−transform of a sequence, then sequence should be zero at all even locations.
Sequence could have been obtained by up sampling another sequence and shifting by one place. By upsampling
by 2 we introduce zero at odd position. For making zero sequence it should be shifted by odd number of samples.

We could in particular choose odd number of samples: L − 1, where L is low pass analysis filter length. Also we
know that z−(L−1)H(−z−1) is essentially the analysis HPF.

f(t) =

+∞∑
n=−∞

f [n]φ(2t− n)

Let g[n] be inverse Z−transform of z−(L−1)H(−z−1) where g[n] is the impulse response of the analysis HPF.
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f [n] = λintermediate[n] ∗ g[n]

=

+∞∑
k=−∞

λintermediate[k]g[n− k]

λintermediate[k] is non zero only at 2k (even) interval.

f [n] =

+∞∑
k=−∞

λintermediate[2k]g[n− 2k]

=

+∞∑
k=−∞

λ̃[k]g[n− 2k]

f(t) =

+∞∑
n=−∞

+∞∑
k=−∞

λ̃[k]g[n− 2k]φ(2t− n)

=

+∞∑
k=−∞

λ̃[k]

+∞∑
n=−∞

g[n− 2k]φ(2t− n)

Substituting n− 2k = q

f(t) =

+∞∑
k=−∞

λ̃[k]

+∞∑
q=−∞

g[q]φ(2t− q − 2k)

=

+∞∑
k=−∞

λ̃[k]

+∞∑
q=−∞

g[q]φ(2(t− k)− q)

Here, (t− k) denotes shift in continuous variable t by k. Now let us define

ψ(t) =
∑
q∈Z

g[q]φ(2t− q)

It follows that ψ(·) ∈ V1. Thus effectively we have,

f(t) =
∑
k

λ̃[k]ψ(t− k)

This equation proves that the proto-type function f(t) in orthogonal complement of V0 in V1 i.e. W0 is expressible
in terms of an integer translates of the function ψ(t). If we could capture the single function ψ(t) and all of its
integer translates, then these form the bases which could span W0 i.e. (ψ(t− k))k∈Z spans W0.
The proof for the theorem of dyadic multiresolution analysis is almost complete except to demonstrate

• (ψ(t− k))k∈Z forms a set of an orthogonal bases.

• 〈ψ(t− k), φ(t−m)〉 = 0 ∀k,m ∈ Z

This will be explained in the next lecture.
The same theorem can be proved in Frequency domain as well, which is given below

26 - 3



3 Proof of the Theorem of Dyadic MRA in Frequency Domain

We shall follow the same steps for the proof of MRA in frequency domain as we did in time domain.

φ(t) ∈ V0 ⊂ V1

φ(t) can be expanded in terms of the low pass filter impulse response h[n] and φ(2t− n) as

φ(t) =

∞∑
n=−∞

h[n]φ(2t− n)

Taking a fourier transform on both sides

φ̂(Ω) =
1

2
H

(
Ω

2

)
φ̂

(
Ω

2

)
(4)

(The fourier series expansion of equation 4 has been explained in previous lectures). Also φ(t) is perpendicular to
φ(t− n),∀n ∈ Z, n 6= 0.
We can define the autocorrelation function

Rφφ(τ) =

∫ ∞
−∞

φ(t+ τ)φ(t)dt

The fourier transform of Rφφ(τ) is |φ̂(Ω)|2. Sampling Rφφ(τ) at τ = n ∈ Z and taking fourier transform gives

∞∑
k=−∞

|φ̂(Ω + 2πk)|2

Since φ(t) is orthogonal to its integer translates, the following relation holds true

∞∑
k=−∞

|φ̂(Ω + 2πk)|2 = C0

Take a typical function,f(t), in orthogonal complement of V0 in V1, then

f(t) =

∞∑
n=−∞

f [n]φ(2t− n)

Taking the cross correlation of f(t) and φ(t)∫ ∞
−∞

f(t+ τ)φ(t)dt = Rfφ(τ)

If we sample Rfφ(τ) we get a zero sequence. That is Rfφ(n) = 0 ∀n ∈ Z .

=⇒
∞∑

k=−∞

F̂ (Ω + 2πk)φ̂(Ω + 2πk) = 0,where F̂ (Ω)φ̂(Ω) is the fourier transform of Rfφ(τ)

It was shown previously that

f̂(Ω) =
1

2
F̂

(
Ω

2

)
φ̂

(
Ω

2

)
(5)

φ̂(Ω) =
1

2
Ĥ

(
Ω

2

)
φ̂

(
Ω

2

)
Substituting in equation 5 gives

∞∑
k=−∞

1

2
F̂

(
Ω

2
+ πk

)
Ĥ

(
Ω

2
+ πk

) ∣∣∣∣φ̂(Ω

2
+ πk

)∣∣∣∣2 = 0
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The left hand side can be expanded as follows∑
k∈Z

1

2
F̂

(
Ω

2
+ 2πk

)
Ĥ

(
Ω

2
+ 2πk

) ∣∣∣∣φ̂(Ω

2
+ 2πk

)∣∣∣∣2+
∑
k∈Z

1

2
F̂

(
Ω

2
+ 2πk + π

)
Ĥ

(
Ω

2
+ 2πk + π

) ∣∣∣∣φ̂(Ω

2
+ 2πk + π

)∣∣∣∣2 = 0

Let Ω
2 = ν∑

k∈Z

1

2
F̂ (ν + 2πk)Ĥ(ν + 2πk)|φ̂(ν + 2πk)|2 +

∑
k∈Z

1

2
F̂ (ν + 2πk + π)Ĥ(ν + 2πk + π)|φ̂(ν + 2πk + π)|2 = 0

=⇒ F̂ (ν)Ĥ(ν)
∑
k∈Z
|φ̂(ν + 2πk)|2 + F̂ (ν + π)Ĥ(ν + π)

∑
k∈Z
|φ̂(ν + 2πk + π)|2 = 0

=⇒ (F̂ (ν)Ĥ(ν) + F̂ (ν + π)Ĥ(ν + π))C0 = 0, C0 6= 0

=⇒ (F̂ (ν)Ĥ(ν) + F̂ (ν + π)Ĥ(ν + π)) = 0

=⇒ F̂ (ν)

F̂ (ν + π)
= −Ĥ(ν + π)

Ĥ(ν)
(6)

Thus we can write

F̂ (ν) = R(ν)Ĥ(ν + π)

F̂ (ν + π) = R(ν + π)Ĥ(ν + 2π)

= R(ν + π)Ĥ(ν) (7)

by comparing the denominators in eqn[6]

F̂ (ν + π) = −R(ν)Ĥ(ν) (8)

Comparing the above equations

R(ν) = −R(ν + π)

R(ν) +R(ν + π) = 0

R(ν) =
F̂ (ν)

Ĥ(ν + π)

We can conceive of R(ν) as DTFT in its own right. That is

∞∑
n=−∞

r[n]e−jΩn = R(Ω)

R(ν + π) in frequency domain implies the sequence r[n] is multiplied by (−1)n that is

r[n] + (−1)nr[n] = 0

Let
∞∑

n=−∞
r[n]Z−n = R(Z)

=⇒ R(Z) = Z−1R1(Z2)

(A shift by one means we get a function of Z2 which has samples only at even positions) Thus

F̂ (Ω) = R(ν)H(ν + π)|ν=Ω

Also f(t) =
∑∞
n=−∞ f [n]φ(2t− n) implies

f̂(Ω) =
1

2
F̂

(
Ω

2

)
φ̂

(
Ω

2

)
=

1

2
R

(
Ω

2

)
Ĥ

(
Ω

2
+ π

)
φ̂

(
Ω

2

)
=

1

2
e−j

Ω
2 R1(ejΩ)Ĥ

(
Ω

2
+ π

)
φ̂

(
Ω

2

)
(9)
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Denote ψ̂(Ω) = 1
2e
−j Ω

2 H(Ω
2 + π)φ̂(Ω

2 )

=⇒ f̂(Ω) = R1(ejΩ)ψ̂(Ω)

substituting for the value of R1(ejΩ)

=⇒ f̂(Ω) =

∞∑
n=−∞

r1[n]e−jΩnψ̂(Ω)

Taking inverse Fourier Transform

f(t) =

∞∑
n=−∞

r1[n]ψ(t− n)

Now we have proved that any function f(t), which belongs to W0, can be spanned by a function ψ(t) and its
integer translates. Now our goal is to prove that ψ(t) is orthogonal to its integer translates.
We have

ψ̂(Ω) =
1

2
e−j

Ω
2 H

(
π − Ω

2

)
φ̂

(
Ω

2

)
The last step will be to prove that the generic function obtained satisfies the orthogonality with its translates,
which will be

∞∑
k=−∞

|ψ̂ (Ω + 2πk) |2= constant

Note: Kindly refer to the tutorial set of lecture-27 for the proof of the above equation.
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