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1 Introduction

In the previous lecture, we discussed that translation and scaling parameter should be dis-
cretized. Discretization of the scaling parameter has been described but the translation parame-
ter is still continuous. The scaling parameter had been discretized logarithmically. More specif-
ically, our aim is discretizing the translation parameter with the consideration that wavelet
transform is discretized with scaling parameter in powers of two.
Before proceeding to the discretization of translation parameter in the powers of two (i.e. in
dyadic scale manner) let us see in short, what we had done earlier.

2 Biorthogonal Filter Bank

Filter banks with different analysis and synthesis wavelets and scaling function are called as
‘Biorthogonal Filter Banks’. When we talk about filter bank, we refer to perfect reconstruction

filter bank. In general the kth analysis branch takes the input x(t) and subjects it to the filter

ψ̂(ak0Ω) , where a0 > 1 and k runs over all integer. Output of the kth analysis branch is given as

input to the kth synthesis branch whose frequency response is
̂̃
ψ(ak0Ω). All synthesis branches

Figure 1: Analysis Branch

Figure 2: Synthesis Branch

are added together to get output. We have
̂̃
ψ(ak0Ω) in frequency domain as

̂̃
ψ(Ω) =

ψ̂(Ω)

SDS(ψ, a0)(Ω)
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where SDS is the sum of dilated spectra.

SDS(ψ, a0)(Ω) =
+∞∑

k=−∞

|ψ̂(ak0Ω)|2

This SDS is bounded by C1 and C2 so that

0 < C1 ≤ SDS(ψ, a0)(Ω) ≤ C2 <∞

Wavelet ψ is admissible because of C1. ψ̃ was meaningful because of upper and lower bound.
ψ̃ is also admissible and bound on SDS is 1

C1
, 1

C2
. When the SDS(ψ, a0)(Ω) is constant for all

Ω, such filter banks are called as ‘Orthogonal Filter Banks’.

3 Orthogonal Filter Bank

When filters on analysis side and synthesis side are same (i.e. same wavelet function with same
scaling parameter) then these filter banks are called as ‘Orthogonal Filter Banks’.

3.1 Construction of orthogonal filter bank

Let us define
̂̃̃
ψ(Ω) as ̂̃̃

ψ(Ω) =
ψ̂(Ω)

+
√

SDS(ψ, a0)(Ω)

Because of upper and lower bound on the SDS of ψ, SDS(ψ, a0)(Ω) can be taken in the de-
nominator.

0 <
√
C1 ≤

√
SDS(ψ, a0)(Ω) ≤

√
C2 <∞

With above observation let us prove that the
˜̃
ψ is an admissible wavelet function. Consider

SDS(
˜̃
ψ, a0)(Ω)

SDS(
˜̃
ψ, a0)(Ω) =

∑+∞
k=−∞ |ψ̂(ak0Ω)|2

SDS(ψ, a0)(Ω)

Sum of dilated spectra is independent of the scaling parameter ak0. Replacing Ω by ak0Ω we get

SDS(ψ, a0)(Ω) = SDS(ψ, a0)(a
m
0 Ω)

Proof in general:

SDS(ψ, a0)(a
m
0 Ω) =

+∞∑
k=−∞

|ψ̂(ak0a
m
0 Ω)|2

=
+∞∑

k=−∞

|ψ̂(ak+m
0 Ω)|2

Here m is a constant integer. Therefore, as k runs over all integers, k + m will also run over
all integers i.e.

SDS(
˜̃
ψ, a0)(Ω) =

∑+∞
k=−∞ |ψ̂(ak0Ω)|2

SDS(ψ, a0)(Ω)

= 1 ∀Ω
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˜̃
ψ has the same upper and lower bound and hence it is admissible and orthogonal wavelet. So,
it can be used as a wavelet on both the analysis side and the synthesis side. Here we have
constructed orthogonal wavelet function from bi-orthogonal wavelet. But still the transition
parameter is continuous.
In case of Haar wavelet, it does not satisfy the condition of upper bound equal to lower bound.
This is because, in case of Haar, the orthogonality is with respect to discrete shifts in time,
and not the continuous shifts. This is a weaker requirement. However, the discrete shifts in
time is what we are looking for, as we do not want to retain the whole continuous translation
parameter.
In the next section we take a wavelet ψ which has the property of admissibility and re-
constructibility and we will study discretization of the translation parameter for the dyadic
case i.e. a0 = 2 to construct a dyadic multiresolution analysis.

4 Dyadic Multiresolution Analysis

Examples of dyadic MRA are Haar MRA, Daubechies MRA (a0 = 2). The wavelet obeys the
requirement

0 < C1 ≤ SDS ≤ C2 <∞, for all Ω

The wavelet may not obey this requirement for all a0, but it obeys this requirement for a0 = 2.
So these bounds, in general, depend on a0. Also, the wavelet admits discretizing the translation
parameter. Should we discretize the translation parameter in the same way in all the branches,
or do it differently?

Let us look at the kth branch. On the kth analysis branch, the output is broadly a band
pass function, that is, it is significant in a certain band of frequencies, not around zero. For
different values of k, there is a logarithmic variation of the band. We invoke a generalization
of the sampling theorem for band pass functions and illustrate it with an example. Consider a
bandpass function where the band on Ω lies between π and 2π.

Figure 3: Band Pass Function

When we talk about discretising the translation parameter we are essentially talking about

sampling the output of the kth analysis branch and feeding these samples to the kth synthesis

branch, instead of the continuous function. So, “how do we sample the output of the kth

branch so that we do not lose anything”, is equivalent to the question “how do we discretize
the translation parameter?”
We have two options:

1. To sample the signal following the Nyquist criteria, and considering 2π as the highest
frequency.

2. To sample it remembering that the band of frequencies occupied by the is only between
π and 2π.
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In the second case, we can use a sampling rate twice the band occupancy. Here bandwidth is
π. Therefore, we could use a sampling rate as 2π. If we simply use the Nyquist criteria, we
should have sampling frequency fs such that

2πfs = 4π ⇒ fs = 2

But we can also do with a sampling frequency fs such that

2πfs = 2 times the band occupancy

= 2π

⇒ fs = 1

Suppose we do use a sampling rate of 1. Then we are adding all the aliases, which are shifts of
the original spectrum by 2πk, for all integer k. The figure 4 shows the original spectrum along
with the aliases due to shifting the spectrum by 2π and −2π.

Figure 4: Frequency spectrum of Band Pass Function

The translations by 2π and −2π do not affect the original spectrum. Similarly, translations
by 4π and −4π leave the original spectrum unpolluted. For higher translations of the original
spectrum, the aliases move further away from the original spectrum, and hence we need not
worry about them. The original part of the signal is therefore unaffected. The original signal
can be retrieved by putting a bandpass filter between π and 2π. This is the bandpass sampling.
This cannot, however, be generalized for any position of the frequency band, i.e. wherever the
band of π is put, a sampling rate of 2π may be used, this is not true in general. It is true
depending on the position of the band. Hence, the bandpass sampling theorem is a little more
complicated than the conventional low pass sampling theorem. It certainly is more economical.
In fact, in the dyadic MRA we are essentially invoking the Bandpass Sampling theorem.
The same principle is applicable for bands between 2π and 4π, 4π and 8π and so on. So for
different branches on the analysis side, we would need to use different sampling frequencies,
and these frequencies will also be related logarithmically. That is exactly what happens in
Dyadic MRA. When we go from V0 to V1, or from V1 to V2, number of points are doubled.
Going from V0 to V−1, number of points is halved. All these are essentially manifestations of
the bandpass sampling theorem.
Let us now focus on a0 = 2. We need to use a logarithmic change of the form 2k of sampling.

On the kth branch, the sampling rate relates to 2k. This is automatically ensured by the
Dyadic MRA axioms.
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4.1 Axioms of a Dyadic MRA and Theorem of MultiResolution
Analysis

1. Ladder axiom
. . . V−2 ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2 ⊂ . . .

V0 is the subspace where the functions are bandpass in a certain band, V1 is the subspace
where functions are bandpass in the next higher band, V2 the next higher band and so
on. Each time the frequency occupancy is doubled. As we go downwards, the frequency
occupancy is halved. So, as we go upwards the sampling frequency is doubled, as we go
downwards the sampling frequency is halved.

2. Axiom of perfect reconstruction⋃
m∈Z

Vm = L2(R)

When all the incremental subspaces are collected together, we go back to the original
input signal.

3. We will always remain in L2(R) so as we go downwards we are going towards smaller and
smaller bands and finally we are going to reach a band with zero power.⋂

m∈Z

Vm = {0}

4. If
x(t) ∈ V0

then
x(2mt) ∈ Vm

Implicitly, this implies logarithmic sampling.

5. Axiom of translation

If
x(t) ∈ V0

then
x(t− n) ∈ V0, for all n ∈ Z

It essentially says that we have an uniform sampling.

6. Axiom of orthogonal basis

There exists a φ(t) such that {φ(t − n)}n∈Z is a basis for V0. Given axioms 4 and 5, we
have a corresponding basis for each of the Vm. This axiom gives us a way to reconstruct
the function from samples. The coefficients in the expansion of the function with respect
to φ(t) are like the generalized samples of the function after filtering.

Now, V0 is a collective subspace and we are sampling a collective subspace, not an in-
cremental subspace. The theorem of multi-resolution analysis is going to give us an
incremental subspace.

Given axioms 1 to 6, there exists a function ψ(t) (ψ(t) ∈ L2(R) and ψ(t) ∈ V1) such that
{ψ(2mt− n)}m∈Z,n∈Z forms an orthogonal basis for L2(R).
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5 Some Discussions on Biorthogonal Filter Bank

We have seen that the bi-orthogonal wavelets are the wavelets that have different filters φ(Ω)
and φ̃(Ω) on the analysis and the synthesis side of the filter bank. We have also gone on to see
that orthogonality constraint is relaxed on the bi-orthogonal wavelets. That is bi-orthogonal
wavelets are not orthogonal to their own discrete dilates and translates. The orthogonality
constraint is replaced by removing the equality

SDS(ψ, a0)(Ω) = constant

with the inequality
0 < C1 ≤ SDS(ψ, a0)(Ω) ≤ C2 <∞

Thus in bi-orthogonal wavelets, the sum of dilated spectra is bound in the positive finite
limit [C1, C2] for all Ω. The admissibility condition, which assures perfect construction of the
original signal from its transformed components, is satisfied due to the lower limit C1.
A very important question at this stage would be, why biorthogonal wavelets? And how do
they differ in properties from orthogonal wavelets?
Biorthogonal wavelets possess some properties which make them more usable than orthogonal
wavelets. Most important of these properties is symmetric property of wavelet filter coeffi-
cients. Symmetric functions help us to achieve linear phase system which are very important
in terms of preserving the signal integrity. By relaxing the condition of orthogonality, we have
also achieved a level of freedom in design of our wavelet function. This freedom permits us to
design symmetric wavelets functions which possess linear phase. Another important of prop-
erty of biorthogonal wavelets is that the filter coefficients must posses odd length. Following
is a discussion on this property.
Let the scaling function on the analysis side be

φ(t) =
∑
n

h(n)φ(2t− n)

In a bi-orthogonal system the scaling function on the synthesis side will be different:

φ̃(t) =
∑
n

h̃(n)φ̃(2t− n)

We know that in a bi-orthogonal system, φ(t) is not orthogonal to its translates. It is orthogonal
to the translates of φ̃(t) ∫

φ(t− n)φ̃(t− n)dt = 1 (1)∫
φ(t− n)φ̃(t−m)dt = 0 n 6= m (2)

∫
φ(t)φ̃(t− n)dt = 0 n 6= 0

For a dyadic system, this condition on the scaling functions can be represented in terms of its
filter coefficients using the dilation equation:

φ(t) =
∑
n

h(n)φ(2t− n)
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∫
φ(t)φ̃(t− n)dt = 0

=⇒
∫ [∑

k

h(k)φ(2t− k)

][∑
l

h̃(l)φ̃(2(t− n)− l)

]
dt = 0

Let l = m− 2n =⇒ m = l + 2n

=⇒
∫ [∑

m

h(m)φ(2t−m)

][∑
m

h̃(m− 2n)φ̃(2t−m)

]
dt = 0

=⇒
∑
m

h(m)h̃(m− 2n) = 0 (3)

Similarly for equation (1) ∑
m

h(m)h̃(m) = 1 (4)

Hence we observe that analysis and synthesis side responses are orthogonal with shifts of 2.
Let us design our h̃(n) such that it is non-zero in the range M1 < n < M2 and h(n) is non-zero
in the range N1 < n < N2.
By equations (3) and (4)

N2 −M1 = 2n+ 1

M2 −N1 = 2m+ 1

where n,m ∈ Z
So,

(N2 −N1)− (M1 −M2) = 2(n+m+ 1)
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