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1 Introduction

In the previous lecture we have seen that the Time bandwidth product is the product of time
variance(σ2

t ) and frequency variance(σ2
Ω) of the given function. Time bandwidth product σ2

t

σ2
Ω for any function x(t) ∈ L2(R) ≥ 0.25. Gaussian function x(t) = e−t

2/2 is an example of
optimal function in sense of time bandwidth product. A more general optimal function is of
the form eγ0t

2/2, where Re(γ0) is negative and γ0 can be complex. Gaussian function is optimal
but it is unrealizable in practice.
Why do we say that the Gaussian is physically unrealizable? Take for example the exponential
time waveform or the exponential time waveform modulated by a sinusoid. These are easily
realizable. Circuits which comprise of resistors, inductors, capacitors when excited say with
a step or a sinusoid give us either exponentially decaying sinusoids or exponentially decaying
transients and therefore those are easy to generate with physical system. So it is difficult to
realize Gaussian waveform in physical system and it can only be approximated.
However, we will see that a cascade of two simple systems realizes a function which is close to
an optimal.

Figure 1: Cascade of two LSI system

In case of Haar scaling function time bandwidth product is infinite. Suppose we took a cascade
of two systems each of whose impulse response is essentially a pulse of width T, i.e., instead of
taking one pulse, take a cascade of them as shown in Figure 1. This together forms a composite
LSI system. The impulse response of this composite LSI system is the convolution of two pulses
which will result in a triangular pulse as shown in Figure 2. Now we will calculate the time

Figure 2: Triangular pulse obtained by convolution of two pulses

bandwidth product of this triangular pulse and compare it with time bandwidth product of
Gaussian. Triangular pulse is given by

x(t) = 1− |t|, where |t| ≤ 1
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Figure 3: Triangular pulse centered at 0

Recalling that time bandwidth product is invariant to scaling of the dependent variable, inde-
pendent variable and translation in time and frequency domain, consider a pulse to be centered
at origin. Time variance is given by

‖tx(t)‖2
2

‖x(t)‖2
2

As x(t) is symmetric around t = 0,squared norm ‖x(t)‖2
2 is given by

‖x(t)‖2
2 = 2

∫ 1

0

(1− t)2dt

Let λ = 1− t, hence we get

‖x(t)‖2
2 = (2)(−)

∫ 0

1

(λ)2dλ

= 2

∫ 1

0

λ2dλ

=
2

3

Now, by symmetry again we have

‖tx(t)‖2
2 = 2

∫ 1

0

t2(1− t)2dt

= 2

∫ 1

0

t2(1− 2t+ t2)dt

= 2

∫ 1

0
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Time variance =
‖tx(t)‖2

2

‖x(t)‖2
2
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1/15
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1
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Figure 4:
dx(t)

dt

Frequency variance is given by

‖dx(t)
dt
‖2

2

‖x(t)‖2
2

and
dx(t)

dt
is as shown in Figure 4.

From Figure 4, it can be seen that
dx(t)

dt
has the appearance of a Haar wavelet. So we have

∥∥∥dx(t)

dt

∥∥∥2

2
= 12 × 1 + 12 × 1 = 2

Therefore the frequency variance is
2

2/3
= 3

Now time bandwidth product= time variance × frequency variance = 0.1× 3 = 0.3.
We note that by cascading the system with itself time bandwidth product is reduced from
infinity(in case of Haar) to 0.3 which is close to optimal value of 0.25. In order to go more close
to 0.25, it is required to repeatedly convolve the pulse with itself. So now we take cascade of 3
such LSI systems each of whose impulse response is essentially a pulse as shown in Figure 5.

Figure 5: Cascade of 3 LSI system

Figure 6: Fourier transform of the triangular pulse

It is important to note that we get a time bandwidth product of 0.3 from not only the compactly
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Figure 7: Fourier duality

supported function (used above) but also from non compactly supported function which is
evident from the duality principle of Fourier transform. So the time variance for triangular
function(in time domain) becomes the frequency variance of the function shown in Figure 7
which is the dual of the triangular function and vice versa.

The time variance of the function
(sinAf

Bf

)2

= frequency variance of x(t) = 1− |t| and

frequency variance of
(sinAf

Bf

)2

= time variance of x(t) = 1 − |t|. Therefore time bandwidth

product is 0.3.
Hence, it is possible to have the same time bandwidth product for two functions with different
shapes. Therefore, two important conclusions can be drawn

• The time bandwidth product is invariant to Fourier transformation.

• We can have two functions one compactly supported and another NOT compactly sup-
ported to have the same time bandwidth product σ2

t σ
2
Ω.

2 Time-frequency plane

Putting time and frequency domains together bring out a new idea which is a two variable
domain also called a ‘Time Frequency Plane’. ‘Time-frequency plane’ is shown in Figure 8.

Figure 8: Time frequency plane

It is a plane in which one axis, say horizontal axis represents time and other axis say vertical
represents frequency. Occupancy of x(t) ∈ L2(R) in time-frequency plane can be thought as
being around t0, the center in time, from t0 + σt to t0 − σt on the horizontal axis. On the
vertical axis we would like to center it at Ω0,the frequency center, and we would spread it from
Ω0 − σΩ to Ω0 + σΩ as shown in Figure 9. So we could think of the function x(t) as being
located in a rectangle which is centered at (t0,Ω0) which has a horizontal width of 2σt and
vertical spread of 2σΩ as shown in Figure 9.
A function in L2(R) occupies a certain area in the time-frequency plane and according to the
uncertainty principle this area cannot be smaller than 0.25 units.
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Figure 9: Time frequency plane centered at t0 and Ω0

Figure 10: Tiling the time-frequency plane

The area of rectangle area is

2σt × 2σΩ = 4σtσΩ ≥ 4
√

0.25 ≥ 2 units

So, the area of the rectangle cannot be smaller than 2 units. Within limitations we can change
the width and height of rectangular tile.

3 Tiling the time-frequency plane

Consider a function y(t) to be analyzed and x(t) as a ‘tool function’. From Parseval’s theorem,∫ +∞

−∞
y(t)x(t)dt =

1

2π

∫ +∞

−∞
Y (Ω)X(Ω)dΩ

Physical interpretation:
If we take the projection of the function y(t) on such ‘tool function’ x(t) in time, we are
essentially extracting information about y(t) in the time region between t0 + σt and t0 − σt.
Parseval’s theorem says that simultaneously we are also extracting information of the Fourier
transform of y(t) in a region captured between Ω0 − σΩ and Ω0 + σΩ. So this is the minimum
rectangular area over which we can view y(t). There is a minimum resolution and we cannot
achieve finer resolution than this when we look at the two domains together. There are many
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different ways in which we can look at the small domain when we are within that uncertainty
limit. But tiling has a different interpretation. If we wish to analyze a function then we should
do it in time-frequency domain together.
Consider an example of ‘chirp function’ (named after the sound of the birds). When birds
chirp crudely the chirp waveform has a pattern which is continuously changing instantaneous
frequency in time. It is of the form =sin(Ω(t).t) where Ω is an instantaneous frequency which
is a function of time.
In the time frequency plane Ωt = a (constant function of time) can be graphically represented
as shown in Figure 11. Suppose Ωt is a linear function of time, then graphically we try to trace

Figure 11: Chirp function

Figure 12: Ωt = A+Bt

this pattern using tool function as shown in Figure 12. We only put rectangles which look like
as they are shown in Figure 12 and we can never really trace what is happening within the
rectangle.
If we think of putting many rectangles in this time frequency plane, then these shaded rectangles
are “lighted”up i.e. magnitude of dot product of function y(t) (which has the linear chirp
nature) with this set of tiles (in which the function essentially is prominent) will be significant.
Example: If we look into the time frequency plane each of these rectangles would corresponds
to a single point. So it would show points that lie on the line as lighted up. But we cannot
go closer than that. We can never know what has happened between these points. Thus,
uncertainty principle says that we cannot get instantaneous frequency as a function of time
exactly. But we could do as closely as we desire by taking smaller rectangles.
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