WAVELETS AND MULTIRATE DIGITAL SIGNAL PROCESSING Lecture 18: The Time-Bandwidth Product Prof. Prof. V.M. Gadre, EE, IIT Bombay

1 Introduction

In this lecture, our aim is to define the time Bandwidth Product, that is the product of time variance σ_t^2 and frequency variance σ_{Ω}^2 and study its properties.

2 Revision

We will revise some basic formulae we introduced in the last lecture.

2.1 The time center t_0

The time center of any waveform x(t) is given by

$$t_0 = \frac{\int_{-\infty}^{\infty} t|x(t)|^2 dt}{\int_{-\infty}^{\infty} |x(t)|^2 dt}$$
(1)

The quantity $\int_{-\infty}^{\infty} |x(t)|^2 dt$ is often represented as $||x||_2^2$ to indicate that it is the squared \mathbb{L}_2 norm of x(t).

2.2 The time variance σ_t^2

The time variance of a function x(t) is defined as

$$\sigma_t^2 = \frac{\int_{-\infty}^{\infty} (t - t_0)^2 |x(t)|^2 dt}{||x||_2^2} \tag{2}$$

2.3 The frequency center Ω_0

The frequency center of $\hat{x}(\Omega)$, where $\hat{x}(\Omega)$ is the Fourier transform of x(t), is given by

$$\Omega_0 = \frac{\int_{-\infty}^{\infty} \Omega |\hat{x}(\Omega)|^2 d\Omega}{\int_{-\infty}^{\infty} |\hat{x}(\Omega)|^2 d\Omega}$$
(3)

As before, the quantity $\int_{-\infty}^{\infty} |\hat{x}(\Omega)|^2 d\Omega$ is expressed as $||\hat{x}||_2^2$. For real signals, $|\hat{x}(\Omega)|^2$ is an even function of Ω and hence $\Omega_0 = 0$ due to symmetry.

2.4 The frequency variance σ_{Ω}^2

The frequency variance of a signal spectrum $\hat{x}(\Omega)$ given by

$$\sigma_{\Omega}^{2} = \frac{\int_{-\infty}^{\infty} (\Omega - \Omega_{0})^{2} |\hat{x}(\Omega)|^{2} d\Omega}{||\hat{x}||_{2}^{2}}$$

$$\tag{4}$$

18 - 1

For interpretation of this time and frequency centers, treat x(t), $|x(t)|^2$, $\hat{x}(\Omega)$ and $|\hat{x}(\Omega)|^2$ as masses individually and looking for their Center of Mass. Time and Frequency Variance is variance of density which we constructed out of that mass x(t) and $\hat{x}(\Omega)$, respectively.

3 Time-Bandwidth Product

In this section, we formulate the Time-Bandwidth Product, which is, product of time variance and frequency variance

$$\sigma_t^2 \sigma_\Omega^2 = \frac{\int_{-\infty}^{\infty} (t - t_0)^2 |x(t)|^2 dt}{||x||_2^2} \frac{\int_{-\infty}^{\infty} (\Omega - \Omega_0)^2 |\hat{x}(\Omega)|^2 d\Omega}{||\hat{x}||_2^2}$$
(5)

It is the measure of localization in time and frequency domains, simultaneously and our aim is to minimize this value.

4 Signal transformations

In this section, we shall study the effect of some common signal transformations on the five quantities mentioned above.

4.1 Shifting in time domain

Let the signal x(t), with time center t_0 be shifted in time by amount t_1 , i.e.

$$y(t) = x(t - t_1) \tag{6}$$

4.1.1 Effect on time center

Since we are only shifting in time and not changing the magnitude, the \mathbb{L}_2 norm square in the denominator will remain unchanged. The new time center will be given as

$$t_{0(new)} = \frac{\int_{-\infty}^{\infty} t |x(t-t_1)|^2 dt}{||x||_2^2}$$
(7)

Now, substitute $t - t_1 = u$. Thus

dt = du

The limits of integration remain unchanged. Thus, the new integral will be

$$t_{0(new)} = \frac{\int_{-\infty}^{\infty} (u+t_1) |x(u)|^2 du}{||x||_2^2}$$

$$= \frac{\int_{-\infty}^{\infty} u |x(u)|^2 du}{||x||_2^2} + \frac{\int_{-\infty}^{\infty} t_1 |x(u)|^2 du}{||x||_2^2}$$

$$= t_0 + t_1 \frac{\int_{-\infty}^{\infty} |x(u)|^2 du}{||x||_2^2}$$

$$t_{0(new)} = t_0 + t_1$$
(8)

because,

$$\int_{-\infty}^{\infty} |x(u)|^2 du = ||x||_2^2$$

4.1.2 Effect on time variance

From the new time center, we can write the expression for the time variance as

$$\sigma_{t(new)}^{2} = \frac{\int_{-\infty}^{\infty} (t - t_{0} - t_{1})^{2} |x(t - t_{1})|^{2} dt}{||x||_{2}^{2}}$$
$$t - t_{1} = u$$

substitute

Thus,

$$\sigma_{t(new)}^{2} = \frac{\int_{-\infty}^{\infty} (u - t_{0})^{2} |x(u)|^{2} du}{||x||_{2}^{2}}$$

$$\sigma_{t(new)}^{2} = \sigma_{t}^{2}$$
(9)

Thus, the time variance is unaffected by a shift in time.

4.1.3 Effect on frequency domain

$$y(t) = x(t - t_1)$$

$$\Rightarrow \hat{y}(\Omega) = e^{-j\Omega t_1} \hat{x}(\Omega)$$

$$\Rightarrow |\hat{y}(\Omega)| = |\hat{x}(\Omega)|$$

$$\Rightarrow ||\hat{y}||_2^2 = ||\hat{x}||_2^2$$
(10)

Since the magnitude of $\hat{y}(\Omega)$ is same as $\hat{x}(\Omega)$, the frequency center and frequency variance will remain same. The only change is in phase, which is of no consequence in calculating Ω_0 and σ_{Ω}^2 .

4.1.4 Effect on Time Bandwidth Product

$$\begin{split} \sigma^2_{t(new)} &= \sigma^2_t \\ \sigma^2_{\Omega(new)} &= \sigma^2_\Omega \\ \sigma^2_{t(new)} \sigma^2_{\Omega(new)} &= \sigma^2_t \sigma^2_\Omega \end{split}$$

Hence, the time bandwidth product is time shift invariant.

4.2 Shifting in frequency domain(or modulation in time domain)

Shifting in frequency domain implies multiplication by a complex exponential in time domain. Thus,

$$y(t) = e^{j x_{1} t} x(t)$$

$$\Rightarrow \hat{y}(\Omega) = \hat{x}(\Omega - \Omega_{1})$$
(11)

The frequency center is shifted by $+\Omega_1$ and frequency variance is unchanged. It can be proved similar to that of time shifting in section 4.1. Also note that, since

$$|y(t)| = |x(t)|$$

time center and time variance also remain unchanged. Hence, the time bandwidth product $\sigma_t^2 \sigma_{\Omega}^2$ is also frequency shift invariant.

4.3 Multiplication by a constant

Let

$$y(t) = C_0 x(t) \quad (C_0 \neq 0)$$

$$\Rightarrow |y(t)|^2 = |C_0|^2 |x(t)|^2$$

$$\Rightarrow |\hat{y}(\Omega)|^2 = |C_0|^2 |\hat{x}(\Omega)|^2$$
(12)

Substituting y(t) in equations (1), (2), (3), (4), (5) we can see that the term $|C_0|^2$ will come outside the integration in both denominator and numerator and will get canceled, thus leaving centers, variances and time bandwidth product unchanged.

4.4 Scaling of independent variable

Let

$$y(t) = x(\alpha t) \qquad (\alpha \in \mathbb{R}, \alpha \neq 0)$$

$$\Rightarrow \hat{y}(\Omega) = \frac{1}{|\alpha|} \hat{x}\left(\frac{\Omega}{\alpha}\right)$$
(13)

4.4.1 Effect in time domain

The new time center is given by

$$t_{0(new)} = \frac{\int_{-\infty}^{\infty} t |x(\alpha t)|^2 dt}{\int_{-\infty}^{\infty} |x(\alpha t)|^2 dt}$$

$$put \quad \lambda = \alpha t$$

$$\Rightarrow d\lambda = \alpha dt$$

$$\Rightarrow t_{0(new)} = \frac{\frac{1}{\alpha^2} \int_{-\infty}^{\infty} \lambda |x(\lambda)|^2 d\lambda}{\frac{1}{\alpha} \int_{-\infty}^{\infty} |x(\lambda)|^2 d\lambda}$$

$$\Rightarrow t_{0(new)} = \frac{1}{\alpha} t_0$$
(14)

Using similar reasoning, it can be proved that

$$\sigma_{t(new)}^2 = \frac{1}{\alpha^2} \sigma_t^2 \tag{15}$$

Note that even if α is negative, the limits of integration would still remain same as there would be reversal of limits twice.

4.4.2 Effect in frequency domain

Starting with $\hat{x}\left(\frac{\Omega}{\alpha}\right)$ it can be proved that

$$\Omega_{0(new)} = \alpha \Omega_0 \tag{16}$$

$$\sigma_{\Omega(new)}^2 = \alpha^2 \sigma_{\Omega}^2 \tag{17}$$

The multiplier $\left(\frac{1}{\alpha}\right)$ is not considered as it neither affects center nor the variance. (The students should verify the above results as an exercise.)

4.4.3 Effect on time-bandwidth product

The new time bandwidth product will be given by

$$\sigma_{t(new)}^2 \sigma_{\Omega(new)}^2 = \left(\frac{1}{\alpha^2} \sigma_t^2\right) \left(\alpha^2 \sigma_{\Omega}^2\right)$$

= $\sigma_t^2 \sigma_{\Omega}^2$ (18)

Thus, the time-bandwidth product is invariant to scaling of the independent variable.

5 Properties of the time-bandwidth product

Thus, to summarize, the time-bandwidth product is invariant to the following operations:

- Shifting waveform in time
- Shifting waveform in frequency(modulation in time)
- Multiplying the function by a constant
- Scaling of independent variable

The time-bandwidth product is thus a robust measure of combined time and frequency spread of a signal. It is essentially a property of the **shape** of the waveform.

Challenge: Can two waveforms with different shapes have the same time bandwidth product?

In the last lecture, we had noted that the time-bandwidth product of the Haar scaling function was ∞ . The above results prove that the time-bandwidth product of **any** gate/rectangular function is ∞ . The next fundamental question which comes to mind is **what is the minimum value of this product?**

5.1 Simplification of the time-bandwidth formula

Without loss of generality, we can assume that a function has both time and frequency center zero (because that does not affect the time bandwidth product).

$$\sigma_t^2 \sigma_\Omega^2 = \frac{\int_{-\infty}^{\infty} t^2 |x(t)|^2 dt}{||x||_2^2} \frac{\int_{-\infty}^{\infty} \Omega^2 |\hat{x}(\Omega)|^2 d\Omega}{||\hat{x}||_2^2}$$
(19)

Now, we simplify the numerator of the frequency variance.

18 - 5

$$\int_{-\infty}^{\infty} \Omega^2 |\hat{x}(\Omega)|^2 d\Omega = \int_{-\infty}^{\infty} |j\Omega \hat{x}(\Omega)|^2 d\Omega$$
(20)

Now, we know that if

$$\begin{aligned} x(t) &\xrightarrow{\mathbb{F}} \hat{x}(\Omega) \\ \frac{dx(t)}{dt} &\xrightarrow{\mathbb{F}} \jmath \Omega \hat{x}(\Omega) \end{aligned}$$

By Parseval's theorem,

$$\begin{aligned} ||\hat{x}(\Omega)||_{2}^{2} &= 2\pi ||x(t)||_{2}^{2} \\ ||\jmath \Omega \hat{x}(\Omega)||_{2}^{2} &= 2\pi ||\frac{dx(t)}{dt}||_{2}^{2} \end{aligned}$$
(21)

Using above results in equation (19), we get

$$\sigma_t^2 \sigma_\Omega^2 = \frac{||tx(t)||_2^2}{||x||_2^2} \frac{||\frac{dx(t)}{dt}||_2^2}{||x||_2^2} = \frac{||tx(t)||_2^2 \cdot ||\frac{dx(t)}{dt}||_2^2}{||x||_2^4}$$
(22)

The next step is to minimize this product that will give us a fundamental bound in nature known as the Uncertainty Bound, which will be discussed in the next lecture.