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1 Introduction

We build in this lecture a very important principle. In fact in some sense the principle that lays
at the heart of the subject of Wavelets and Time frequency methods namely the uncertainty
principle. We shall devote the whole lecture to a discussion of uncertainty principle laying
the foundation of what the uncertainty means first, and then proceeding to obtain certain
numerical bounds in two domains simultaneously.

2 Non-formal introduction to the idea of containment

As we discussed in previous lecture, there is of course a very tight or strong notion of contain-
ment. Is it possible to have compact support in both time domain and frequency domain? So
both in the time and in frequency, we demand the function to be nonzero only over a finite
part of the independent variable or the real axis. This is a very strong demand and of course
we mentioned in the previous lecture that it cannot be met ever. It related to the fact that
if we noted that the function was finitely supported(compactly supported) in the real axis,
there was certain properties of that function, specifically the existence of an infinite number of
derivatives, makes it impossible that the function to be compactly supported or nonzero only
over a finite interval of the independent variable in the natural domain. Natural domain can
mean time, space or whatever.
But we had asked whether a weaker notion of containment could be admitted. So to speak in
some sense, be on the finite interval of the independent variable which index it and simultane-
ously in the transformed domain, i.e. the frequency domain, we insists that most of the content
be in a finite interval of the frequency axis. This seems like more reasonable requirement and
to a certain extent this requirement can be met.
We are finally going to come out with certain bounds on how much we can contain in the two
domains simultaneously. So there are several steps to reach this destination:
The first step is to put down in a non diffused, in a non formal way, what do we mean by
containment? What do we mean by most of the content being in certain finite range? We had
also hinted at the approach that we would take to do this briefly in the previous lecture. We
had said that there are two ways of doing this. We should think on the magnitude squared of
the function and the magnitude squared of the Fourier transform as a one dimensional object
and then we could talk about the centre of that object or “centre of mass”. We could talk about
the spread of the object around the centre of mass, using the notion of “radius of gyration”
or probability density, built from the squared magnitude of the function and another density
built from the squared magnitude of the Fourier transform. We could then look at the “mean”
of these densities and “variance” of these densities. The variances are indicative of the spread.
So this was a non formal introduction.
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3 Formalization of the idea of containment

Now we need to formalize this. We are going to work in L2(R). It is always going to be the
space of square integrable functions. In fact, we must mention that sometimes we are actually
going to work in the intersection of the space of square integrable functions and absolutely
integrable functions.

x(t) ∈ L2(R) ∩ L1(R)

Now, as the function belongs to L2(R), its Fourier transform also belongs to L2(R). Let, x(t)
have the fourier transform x̂(Ω). Then, x̂(Ω) ∈ L2(R) as well. So, we first define a density or
a “one dimensional mass”. ∫ ∞

−∞
|x(t)|2dt = ‖x(t)‖2

2

which is finite. Therefore, we define the density as,

px(t) =
|x(t)|2

‖x(t)‖2
2

which is a probability density, because of the following reasons:
1. px(t) ≥ 0 ∀ t (It is a density in t).
2.

∫∞
−∞ px(t)dt = 1 (from definition).

Similarly, let us define a density in the angular frequency domain.

px̂(Ω) =
|x̂(Ω)|2

‖x̂(Ω)‖2
2

This is also a probability density, because of the following reasons:
1. px̂(Ω) ≥ 0 ∀ Ω (It is a density in Ω).
2.

∫∞
−∞ px̂(Ω)dΩ = 1 (from definition).

Now we have taken the probability density perspective, but we could as well take the so
called one dimensional mass perspective, i.e., we could think of the px(t) as a one dimensional
mass in t and similarly px̂(Ω) as one dimensional mass in Ω. So, here, we have a simplified
situation. We have a mass in one dimensional space. That one dimensional space can be the
space of t or the space of Ω.
If we choose the “mass” perspective, consider the “center of mass” and the “spread around
the center”. Spread around the center in mechanics can be measured by a quantity called the
“Radius of gyration”. If we choose the “probability density” perspective, consider the “mean”
and “variance”.
Now we must assume that these quantities can be calculated and we shall do that. It is possible
that the variance can be infinity. So we are not always guaranteed of a finite variance. We are
trying to find a lower limit to where these quantities go in the two domains simultaneously.
Considering the function x(t), we prefer to take the probability density perspective. So we
think of px(t) and px̂(Ω) as the probability densities and now we shall write down the “mean”.
Let, px(t) have the mean t0.

t0 =

∫ ∞

−∞
tpx(t)dt

We will of course recognize the definition to hold good for the “center of mass” here. Essentially,
we are calculating the movement by choosing the fulcrum to be zero and therefore getting a
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different fulcrum or a point at which the movements are balanced.
Similarly, let px̂(Ω) have the mean Ω0.

Ω0 =

∫ ∞

−∞
Ωpx̂(Ω)dΩ

Once, if have the mean, we assume the “means” are finite and normally they should be. In
some pathological situations, we may have a problem. We are not looking at those pathological
situations. So, assuming these “means” are finite, let us look at the “variances”.
So, the variance in t is defined as,

σ2
t =

∫ ∞

−∞
(t− t0)

2px(t)dt

And similarly, the variance in angular frequency is defined as,

σ2
Ω =

∫ ∞

−∞
(Ω− Ω0)

2px̂(Ω)dΩ

Once again, we are assuming the variances to be finite. In any case, here we don’t have such a
problem. Even if the variances are infinite, we will accept it. If we choose to think these as one
dimensional masses, it is very clear that the variance is an indication of the spread. So larger
the variance, the more the density said to have spread around the “mean” and the smaller
the variance, the more the density or the mass is said to be concentrated. So, now we have a
formal way to define containment.
We can say that the containment in a given domain refers to the variance in that domain. So
containment in time is eventually σ2

t and containment in angular frequency domain is essen-
tially σ2

Ω quantity. How small can we make any one of these quantities for a valid function? In
a few minutes, we will be convinced that there is no limit for this!
In fact we will take the Haar scaling function as an example and calculate it’s the variance.

Example: Calculate mean and variance for the Haar scaling function.

Figure 1: Haar scaling function

We can see that the Haar scaling function φ(t) is one between zero and one and zero elsewhere.
Its probability density is given as,

pφ(t) =
|φ(t)|2

‖φ(t)‖2
2

Now,

‖φ(t)‖2
2 =

∫ ∞

−∞
|φ(t)|2dt =

∫ 1

0

1dt = 1

Hence, pφ(t) is drawn as, Now, we will find the “mean”. In fact, even before finding the mean
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Figure 2: Probability density function in time

formally, we can find it graphically. The mean is going to be at the centre of 0 and 1 i.e, at 1
2
.

Let us do it formally,

t0 =

∫ ∞

−∞
tpφ(t)dt

=

∫ 1

0

tdt

=
t2

2
|10

=
1

2

Hence, mean is shown as,

Figure 3: Mean of pφ(t)

Now, we will find the “variance”.

σ2
t =

∫ ∞

−∞
(t− t0)

2pφ(t)dt

=

∫ ∞

−∞
(t− 1

2
)2pφ(t)dt

=

∫ 1

0

(t− 1

2
)2dt

Let, t− 1
2

= λ,
⇒ dt = dλ.
As, limits of t are 0 to 1, we get, limits of λ are −1

2
to 1

2
. Hence, integral becomes,

σ2
t =

∫ 1
2

−1
2

λ2dλ
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=
λ3

3
|
1
2
−1
2

=
1

3
(
1

8
+

1

8
)

=
1

12

Therefore, taking positive square root, we get,

σt =
1

2
√

3

As we can be seen that, σt is less than 1
2
. In a certain sense, we don’t really use the number

half to denote the spread of φ(t) around its mean. The variance doesn’t say it goes all the way
to half. It says the spread is a number slightly less than half. Most of the energy is contained
in that region around the mean captured by the variance. In fact, if we are very specific, the
fraction of the energy contained here would be, i.e. the energy contained in [t0 − σt, t0 + σt]
would eventually be given by, ∫ t0+σt

t0−σt

pφ(t)dt

We are not looking for 100%. We are considering the significant part of it. Now we will
calculate this value. Substituting the values, the integral becomes,∫ t0+σt

t0−σt

pφ(t)dt =

∫ 1
2
+ 1

2
√

3

1
2
− 1

2
√

3

1dt

= (
1

2
+

1

2
√

3
)− (

1

2
− 1

2
√

3
)

=
1√
3

= 0.577

It is certainly not a large fraction like 90%, but it is more than 50%. This fraction is not
going to be the same for all functions. It depends on the density. Hence, we can say that, the
variance is one accepted measure of spread. And very often the variance actually tells us where
most of the function is concentrated. Even in this case, if we look at it carefully, quite a bit of
this function is between (1

2
− 1

2
√

3
) and (1

2
+ 1

2
√

3
).

Now we will calculate the variance in the frequency domain of this same function. So, let us
look at φ̂(Ω). Actually, we are interested in |φ̂(Ω)|2. And that is of the form,

|φ̂(Ω)|2 = |
sin(Ω

2
)

(Ω
2
)
|2

We could integrate this. In deed we know that,

‖φ(t)‖2
2 =

∫ ∞

−∞
|φ(t)|2dt =

1

2π

∫ ∞

−∞
|φ̂(Ω)|2dΩ
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which is equal to be 1. Hence,

‖φ̂(Ω)‖2
2 =

∫ ∞

−∞
|φ̂(Ω)|2dΩ = 2π

Hence, pφ̂(Ω) is given as,

pφ̂(Ω) =
|φ̂(Ω)|2

‖φ̂(Ω)‖2
2

=
|φ̂(Ω)|2

2π

It has an appearance like,

Figure 4: Waveform of pφ̂(Ω)

Now, it is very easy to see that the mean of this function is zero. This function is symmetrical
around Ω = 0. For all real functions x(t), x̂(Ω) is magnitude symmetric. Therefore the mean
Ω0 = 0.
Now, let us find the variance. So, the variance of φ̂(Ω) is given as,

σ2
Ω =

∫ ∞

−∞
(Ω− Ω0)

2pφ̂(Ω)dΩ

=

∫ ∞

−∞
Ω2 |φ̂(Ω)|2

2π
dΩ

=

∫ ∞

−∞

Ω2

2π
|
sin(Ω

2
)

(Ω
2
)
|2dΩ

=

∫ ∞

−∞

4

2π
| sin(

Ω

2
)|2dΩ

Here, we are in serious trouble. The constant 4
2π

is not important, but | sin(Ω
2
)|2 is very

important. We are trying to integrate the | sin(Ω
2
)|2 function.

| sin(Ω
2
)|2 is a periodic function with period 2π. We are trying to integrate a periodic function

from −∞ to +∞, and obviously that integral is going to diverge. So the fear that we had when
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Figure 5: Waveform of | sin(Ω
2
)|2

we started the discussion comes out to be true right in the very simple case of scaling function
that we know. The variance of φ̂(Ω) is infinite! In other words, φ(t) is not at all confined in the
frequency domain, at least in this sense. All this while in our discussion, when we talked about
time and frequency together and so on, in the previous lecture we had been worried about
these side lobes. Besides it is all right to look at the main lobe and talk about the presence in
the main lobe. But then we have these side lobes and the side lobes are falling off by the factor
of 1

Ω
in magnitude. As we can see, the side lobes have created the problem after multiplication

of Ω2 in the calculation of variance. The side lobe creates a periodic function to be integrated,
and we are in trouble.
So, this tells us again why we have to much beyond the Haar. We have been asking again
and again, why we can’t content with the Haar multi-resolution analysis. Now we have one
more formal answer, if we look at the scaling function in the Haar multi-resolution analysis, its
variance in the frequency domain analysis is infinite. It is not at all contained in the frequency
domain in this sense. Now, it is a natural question to ask, what is it make the variance infinity?
Why did we have a divergent variance? In fact we can answer these questions, if we only care
to make a slight adjustment of the expression of variance. The variance of φ̂(Ω) is given as,

σ2
Ω =

∫ ∞

−∞
Ω2 |φ̂(Ω)|2

‖φ̂(Ω)‖2
2

dΩ

=
1

‖φ̂(Ω)‖2
2

∫ ∞

−∞
Ω2|φ̂(Ω)|2dΩ

=
1

‖φ̂(Ω)‖2
2

∫ ∞

−∞
|jΩφ̂(Ω)|2dΩ

Now, jΩφ̂(Ω) has some meaning. It is essentially the Fourier transform of dφ(t)
dt

.
Hence, energy in the derivative function is given as,∫ ∞

−∞
|dφ(t)

dt
|2dt =

1

2π

∫ ∞

−∞
|jΩφ̂(Ω)|2dΩ

Hence, the variance of φ̂(Ω) is given as,

V ariance of φ̂(Ω) =
2π(Energy in derivative)

‖φ̂(Ω)‖2
2
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=
2π(Energy in derivative)

2π(Energy in function)

For a real x(t), the frequency variance, i.e. the Ω variance is,

σ2
Ω =

Energy in dx(t)
dt

Energy in function x(t)
=
‖dx(t)

dt
‖2

2

‖x(t)‖2
2

And now we have the answer for the trouble! As we can see, φ(t) is discontinuous. So,
when its derivative is considered, there are impulses in the derivative. And impulses are not
square integrable. So, the numerator diverges. The moment we have a discontinuous function,
we have an infinite frequency variance. With this note, we realize that, if we want to get
some meaningful uncertainty, some meaningful bound, we must at least consider continuous
functions.
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