
WAVELETS AND MULTIRATE DIGITAL SIGNAL PROCESSING

Lecture 16: Ideal Time-Frequency Behaviour
Prof.V.M.Gadre, EE, IIT Bombay

1 Introduction

In the previous lecture we have looked at the Fourier Transform of the scaling function (Father
wavelet) φ(t) and the wavelet function (Mother wavelet) ψ(t) in the Haar Multiresolution
Analysis. In this lecture we will see, what is the ideal situation that we are driving towards.
We have made some observation about the nature of the magnitude of φ̂(Ω) and ψ̂(Ω). We
have noted, when we take dot product of x(t) and a translate of φ(t), the magnitudes of the
Fourier Transforms of x(·) and φ(·) are getting multiplied. We have observed that the nature
of the Fourier Transform of the φ(·) and also that of ψ(·) was such that it emphasizes some
bands of frequencies of the underlying function x(t).

2 Frequency localization by φ(t) and ψ(t)

The magnitude of Fourier Transform of φ(t) is shown in Figure 1.

Figure 1: Magnitude of Fourier Transform of φ(t)

Magnitude of Fourier Transform of ψ(t) is
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To sketch its waveform, we first sketch
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two waveforms. Function | sin
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| has a monotonically incresing characteristics between 0 to

Figure 2: Magnitude plots of
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2π and decreasing characteristics between 2π to 4π. So one cannot possibly have a value of

the product of | sin
(

Ω
4

)
| and

sin

(
Ω
4

)
(Ω

4
)

higher in the range 2π to 4π than the value of it at 2π.

We can see the product is zero at Ω = 0 and what after 2π is less than what is at 2π. So,
somewhere in between 0 to 2π that product is having maximum and after that the product
monotonically decreases. Also the function is not symmetric in the range 4π to 8π around 6π.
So the maximum of the product in 4π to 8π is not at 6π, but somewhere around 6π. Finally,
the product would look like as shown in Figure 3. In range −4π to 4π, φ̂(Ω) and ψ̂(Ω) look
like as shown in Figure 4.

From Figure 4, it is observed that φ̂(Ω) and ψ̂(Ω) emphasizes those frequencies lying around
zero and those frequencies laying around its maximum in the band 0 to 4π respectively and
de-emphasizes frequencies on either sides. It is clear that ψ̂(Ω) has a bandpass characteristic
and hence acts as a bandpass function. A band pass function emphasizes frequencies some-
where around its center frequency, where its value is maximum and de-emphasizes both sides
around zero and around infinity. We note that when we contract scaling or wavelet function in
time, we go up the ladder in Haar MRA and when we expand, we go down the ladder. Thus,
when we go up the ladder, we are expanding in frequency domain and contracting in time
domain. And when we go down the ladder, we are expanding in time and therefore contracting
in frequency.

When we go down the ladder, we are contracting in frequency and we are emphasizing smaller
and smaller frequency band around zero and also, as we are contracting ψ̂(·) , we are empha-
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Figure 3: Magnitude plot of
sin2
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Figure 4: Magnitude of Fourier Transforms of φ̂(Ω) (green) and ψ̂(Ω) (red) in the range −4π
to 4π

sizing frequencies around smaller and smaller center frequency. The center frequency of ψ̂(·)
decreases geometrically or logarithemically as we go down the ladder in the Haar MRA and
width of the band of ψ̂(·) also decreases geometrically or logarithmically. Here the ratio of
bandwidth to center frequency remains constant. We call this as constant quality factor. For
a bandpass filter or bandpass function the quality factor can be defined as

Quality Factor =
centre frequency

bandwidth
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Typically the term bandwidth is used to denote that range of frequencies within which the
magnitude remains within a certain percentage of maximum magnitude. More specifically, we
often use half power bandwidth, where the magnitude falls to 1√

2
of its maximum value, is

considered as the cutoff point of that signal. The ratio 1√
2

has a significance, at that point,

where magnitude is 1√
2

of maximum, power of a sine wave falls to 1
2

of the maximum value.

Therefore two important observations can be made as

• The ratio of of bandwidth to center frequency of |ψ̂(·)| remains constant.

• As we go up the ladder of MRA, we deal with |ψ̂(·)| having higher center frequency

and larger bandwidth. Similarly, as we go down the ladder, |ψ̂(·)| possesses lower center
frequency and smaller bandwidth.

3 Time localization and frequency localization

Now, we use bandwidth as a measure of the range of frequencies that are emphasized by the
function. This is because in finding dot product of x(t) with and translate of ψ(t) or any
stretched or compressed version of it, Parseval’s theorem says that we are, in fact multiplying
Fourier transform of x(t) and Fourier Transform of particular translate or dilate of ψ(t) in
frequency domain. The same argument is valid for φ(t) also.

Now translate does not have any effect on magnitude, but dilate has. So when we take dot
product of ψ(t) with x(t), we are multiplying the part of |x̂(Ω)| which lie within the band, by
a larger number and other part by a smaller number. So in effect a filtering effect is also being
observed. Effectively φ(t) is doing a lowpass filtering operation and ψ(t) is doing a bandpass
filtering operation.

If we take φ(·) itself and we focus on main lobe of Fourier Transform then, we are empha-
sizing on signals ranging between 0 − 2π, and we are doing it by an operation in time domain
and time restriction can be said precisely. φ(·) and ψ(·) are very precisely localized in time. So
the product of φ(·) and ψ(·) or any of their dilate or translate with x(t) is also localized in time.

In signal processing, we observe conflict between time and frequency. In this case, time lo-
calization is precise, but localization in frequency is somewhat suspended. We can roughly say
that (focusing on the main lobe) these are in some sense localized. But there are side lobes also.

Ideally, we would like to have precise time as well as frequency localization simultaneously.
To find out frequency localization consider dot product of x(·) with perpendicular translates
of ψ(·).

So the product is (assuming both functions are real):∫ ∞

−∞
x(t)φ(t+ τ)dt

From Parseval’s theorem∫ ∞

−∞
x(t)φ(t+ τ)dt =

1

2π

∫ ∞

−∞
x̂(Ω) ̂φ(t+ τ)dΩ
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∫ ∞

−∞
x(t)φ(t+ τ)dt =

1

2π

∫ ∞

−∞
x̂(Ω)φ̂(Ω)ejΩτdΩ

This is the inverse Fourier Transform of x̂(Ω)φ̂(Ω) at the point τ .

So when we multiply by φ̂(Ω), we are in effect doing some kind of lowpass filtering opera-
tion and when we take Inverse Fourier Transform, we are taking what comes out of the crud
lowpass filter whose impulse response is φ(t) or very close to φ(t).

Now we sample this, at τ = n where n ∈ Z. i.e., if we take a function y(t) and sample it
ideally for n ∈ Z, we get

C0

∑
k∈Z

ŷ(Ω + 2πk)

C0 is a constant, this constant relates to sampling process. We can ignore this constant for this
moment. So, in order to reconstruct y(t) from its samples these translates must not interfere
with the original. So, we have to ensure that these ŷ(Ω + 2πk) are non overlapping with the

original and that is ensured by ensuring that the lowpass filter cuts off at Ω = π. Had φ̂(Ω)
been an ideal lowpass function with a cut off of π, then this aliasing process C0

∑
k∈Z ŷ(Ω+2πk)

would leave ŷ(Ω) unaffected. So that is the ideal situation we are looking for.

Now we need to look at what is the ideal towards we are driving, as far as ψ(t) goes. When we
go from V0 to V1, we have noted that V1 is just like V0, but compressed by a factor of 2 in time,
and therefore expanded by a factor of 2 in frequency domain. So for V1 (Haar MRA ladder),
we expanded by two 2 in frequency, that means we are asking for a lowpass filter whose cut
off is 2π, instead of π. Now we have interpretation for incremented subspace. Obviously, V0 is
going to contain information between 0 and π and V1 between 0 and 2π. Then W0 will contain
information between π to 2π. This is shown in Figure 5. So ψ(·) is aspiring to be a bandpass

Figure 5: φ(·) aspires to become low pass function. Ideally, information captured by it in
different subspaces V−1(blue), V0(black) and V1(red)

function between π and 2π. Similarly, from going V−1 to V0, we use corresponding dilate of
ψ(·) that aspires to be a bandpass function between π

2
and π and when we go from V1 to V2,

we use dilate of ψ(·) that aspires to be a bandpass function between 2π and 4π and so on.
This is illustrated in Figure 6. Now, we want to confine ourselves in a certain region of time
and also want to focus or confine on a particular region of frequency. The first question that
arises is, whether it is possible or not. Can we be compactly supported in time and frequency
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Figure 6: ψ(·) aspires to become band pass function. Ideally, information captured by it in
different subspaces W−1(green),W0(black) and W1(blue)

simultaneously? The answer is no. We cannot be compactly supported in both the domains.

However, if we do not ask for compact support in both domains, it is possible to have a
function whose most of the energy is contained in the finite interval over time as well as fre-
quency. Such function can be said to have a compact support in a weaker sense. φ(·) and
ψ(·) are bounded in both domains in a weaker sense as we focus on main lobe. Main lobe
has certain amount of energy. Then φ(·) and ψ(·) are localized in time and frequency both.
Variance is important statistical property that is very useful in calculating spread of a given
function, which is indicative of concentration of energy of a function within certain band (in
time as well as frequency domain).

The question arises that is it possible to have finite variances in both frequency as well as
time domain simultaneously? The answer is yes. We can have a both the variances of finite
value. Now how small these variances can be? To answer this question we introduce time-
frequency uncertainty. In case of Haar wavelet, it is somewhat concentrated in frequency, but
well concentrated in time. Daubechies function, as we go at higher order, we get a somewhat
better filtering operation that is better frequency localization.

In next lecture we shall investigate the concept of uncertainty deeply.
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