WAVELETS AND MULTIRATE DIGITAL SIGNAL PROCESSING

Lecture 13: Conjugate Quadrature Filter Bank

Prof.V.M.Gadre, EE, IIT Bombay

1 Introduction

We continue in this lecture to build upon the particular class of filter bank which we have introduced in the previous lecture called a Conjugate Quadrature Filter(CQF) bank.

2 Conjugate Quadrature Filter bank

For the perfect reconstruction system we must first do away aliasing. The alias cancellation equation for the two band filter bank is given by

$$
\begin{gathered}
G_{0}(Z) H_{0}(-Z)+G_{1}(Z) H_{1}(-Z)=0 \\
\frac{G_{1}(Z)}{G_{0}(Z)}=-\frac{H_{0}(-Z)}{H_{1}(-Z)}
\end{gathered}
$$

Equating the numerator and denominator we get the relation between $G_{0}(Z), H_{1}(-Z), G_{1}(Z)$ and $H_{0}(-Z)$ as

$$
\begin{aligned}
G_{1}(Z) & =-H_{0}(-Z) \\
G_{0}(Z) & =H_{1}(-Z)
\end{aligned}
$$

The relation between the analysis HPF (high pass filter) and analysis LPF (low pass filter) called a conjugate quadrature relationship, is given by

$$
H_{1}(Z)=z^{-D} H_{0}\left(-Z^{-1}\right)
$$

Here z^{-D} term is used to introduce causality. Putting $Z=e^{j \omega}$ in the above equation we get the frequency response equation as

$$
\begin{aligned}
H_{1}(Z) & =\left.z^{-D} H_{0}\left(-Z^{-1}\right)\right|_{Z=e^{j \omega}} \\
H_{1}\left(e^{j \omega}\right) & =e^{-j \omega D} H_{0}\left(-e^{-j \omega}\right)
\end{aligned}
$$

The magnitude response is given by

$$
\begin{aligned}
\left|H_{1}\left(e^{j \omega}\right)\right| & =\left|e^{-j \omega D} H_{0}\left(-e^{-j \omega}\right)\right| \\
\left|H_{1}\left(e^{j \omega}\right)\right| & =\left|e^{-j \omega D}\right|\left|H_{0}\left(-e^{-j \omega}\right)\right| \\
\left|H_{1}\left(e^{j \omega}\right)\right| & =\left|H_{0}\left(-e^{-j \omega}\right)\right|
\end{aligned}
$$

$H_{0}(Z)$ is a Low pass filter with a real impulse response (real coefficients), therefore

$$
H_{0}\left(e^{-j \omega}\right)=\overline{H_{0}\left(e^{j \omega}\right)}
$$

The magnitude response of LPF $H_{0}(Z)$ is symmetric along the magnitude axis and phase response is anti-symmetric along the frequency axis ω.

$$
H_{0}\left(-e^{-j \omega}\right)=H_{0}\left(e^{-j(\omega \pm \pi)}\right)
$$

NOTE: LPF with cutoff frequency $\frac{\pi}{2} \stackrel{(\text { With shift by } \pi \text { on } \omega)}{\rightleftharpoons}$ HPF with cutoff frequency $\frac{\pi}{2}$
We have shown,

$$
H_{1}(Z)=z^{-D} H_{0}\left(-Z^{-1}\right)
$$

For the perfect reconstruction the equation must satisfy,

$$
\begin{aligned}
G_{0}(Z) H_{0}(Z)+G_{1}(Z) H_{1}(Z) & =C_{0} z^{-D} \\
H_{1}(-Z) H_{0}(Z)-H_{0}(-Z) H_{1}(Z) & =C_{0} z^{-D} \\
(-1)^{-D} z^{-D} H_{0}\left(Z^{-1}\right) H_{0}(Z)-H_{0}(-Z) z^{-D} H_{0}\left(-Z^{-1}\right) & =C_{0} z^{-D}
\end{aligned}
$$

We need the following for perfect reconstruction systems,

$$
(-1)^{-D} H_{0}\left(Z^{-1}\right) H_{0}(Z)-H_{0}(-Z) H_{0}\left(-Z^{-1}\right)=C_{0}
$$

If we consider the Haar filter then the relationship between $H_{0}(Z)$ and $H_{1}(Z)$ is given by,

$$
\begin{aligned}
H_{0}(Z) & =1+z^{-1} \\
H_{0}\left(-Z^{-1}\right) & =1-z
\end{aligned}
$$

The above equation is non-causal so to make it causal by inserting delay, we get the below equation,

$$
z^{-D} H_{0}\left(-Z^{-1}\right)=z^{-D}(1-z)
$$

Here z^{-D} retains causality.
If D is odd,

$$
\begin{aligned}
H_{0}(Z) H_{0}\left(Z^{-1}\right)+H_{0}(-Z) H_{0}\left(-Z^{-1}\right) & =-C_{0} \\
H_{0}(Z) H_{0}\left(Z^{-1}\right)+H_{0}(-Z) H_{0}\left(-Z^{-1}\right) & =\text { Constant }
\end{aligned}
$$

Putting $Z=e^{j \omega}$, we get the above equation in the frequency domain as,

$$
H_{0}\left(e^{j \omega}\right) H_{0}\left(e^{-j \omega}\right)+H_{0}\left(-e^{j \omega}\right) H_{0}\left(-e^{-j \omega}\right)=\text { Constant }
$$

For real impulse response we have,

$$
\begin{aligned}
H_{0}\left(e^{-j \omega}\right) & =\overline{H_{0}\left(e^{j \omega}\right)} \\
H_{0}\left(e^{j \omega}\right) \overline{H_{0}\left(e^{j \omega}\right)}+H_{0}\left(e^{j(\omega \pm \pi)}\right) \overline{H_{0}\left(e^{j(\omega \pm \pi)}\right)} & =\text { Constant } \\
\left|H_{0}\left(e^{j \omega}\right)\right|^{2}+\left|H_{0}\left(e^{j(\omega \pm \pi)}\right)\right|^{2} & =\text { Constant }
\end{aligned}
$$

Above equation is called the power complementary equation.
For perfect reconstruction system,

$$
H_{0}(Z) H_{0}\left(Z^{-1}\right)+H_{0}(-Z) H_{0}\left(-Z^{-1}\right)=\text { Constant }
$$

Lets assume $\kappa_{0}(Z)=H_{0}(Z) H_{0}\left(Z^{-1}\right)$

$$
\kappa_{0}(Z)+\kappa_{0}(-Z)=\text { Constant }
$$

We are going to choose even length of $H_{0}(Z)$, i.e. $D \longrightarrow$ Odd

Similarly, $H_{0}\left(Z^{-1}\right)$ is given by,

Here $H_{0}(Z) H_{0}\left(Z^{-1}\right)$ corresponds to their convolution in time domain

Let impulse response $h[k]$ be as given below

And impulse response $g[k]$ is given below which is mirror image of $h[k]$, that means $g[k]=h[-k]$

$$
g[k]: \underset{\substack{h_{D} \\-D}}{h_{D}} \ldots h_{2} h_{1} h_{0} h_{0}
$$

Similarly $g[n-k]$ is shown below

$$
g[n-k]: \underset{\substack{\uparrow \\ n}}{h_{0}} h_{1} h_{2} \ldots \underset{\substack{\uparrow \\ n+D}}{h_{D}}
$$

The convolution between $h[k]$ and $g[k]$ is given

$$
\kappa_{0}[n]=\sum_{k=-\infty}^{k=+\infty} h[k] g[n-k]
$$

Here $h[k]$ is causal and filter length is $(D+1)$.
The convolution at the sample n is $y[n]$.

Shown below is the multiplication of $h[k]$ and $g[k]$ (which is shifted by n samples)

In Z-domain $\kappa_{0}(Z)=H_{0}(Z) H_{0}\left(Z^{-1}\right)$.
The $m^{\text {th }}$ sample of the filter $k_{0}[m]$ is $<h[k], h[k \pm m]>$
Let $m=2$ and filter length $4(D=3)$

$$
\begin{array}{lllllll}
& h_{0} & h_{0} & h_{1} & h_{2} & h_{3} & \\
& & & h_{0} & h_{1} & h_{2} & h_{3} \\
& \uparrow & & \uparrow & & & \\
& 0 & & 2 & & &
\end{array}
$$

$$
k_{0}[2]=h_{0} h_{2}+h_{1} h_{3}
$$

If $m=-2$ and filter length $4(D=3)$

$$
\begin{array}{ccccccc}
k_{0}[-2]: & & h_{0} & h_{1} & h_{2} & h_{3} \\
& h_{0} & h_{1} & h_{2} & h_{3} & & \\
& \uparrow & & \uparrow & & & \\
& -2 & & 0 & & &
\end{array}
$$

$$
k_{0}[-2]=h_{0} h_{2}+h_{1} h_{3}
$$

That means the convolution between $h[n]$ and $h[-n]$ is symmetrical.

$$
\begin{aligned}
\kappa_{0}(Z)+\kappa_{0}(-Z) & =\text { Constant } \\
\frac{1}{2}\left\{\kappa_{0}(Z)+\kappa_{0}(-Z)\right\} & =\text { Constant }
\end{aligned}
$$

From the above equation the summation $\frac{1}{2}\left\{\kappa_{0}(Z)+\kappa_{0}(-Z)\right\}$ represents the nonzero sample value at even location and zero sample value at the odd location.
Let $\kappa_{0}(Z)$ correspond to the sequence $k_{0}[n], \frac{1}{2}\left\{\kappa_{0}(Z)+\kappa_{0}(-Z)\right\}$ impulse response is shown below.

$$
\begin{aligned}
& \text { multiplication } \\
& k_{0}[n] \rightarrow \underset{\uparrow}{\otimes} \rightarrow \text { non-zero at even \& zero location } \\
& \ldots \ldots 10101010 \ldots \ldots \\
& \uparrow \\
& 0
\end{aligned}
$$

But from the equation $\frac{1}{2}\left\{\kappa_{0}(Z)+\kappa_{0}(-Z)\right\}=$ Constant, we want the non-zero sample value only at zero location and zero sample value for odd and even location.

So at the even location $m=2 l$ and $m \neq 0$ and $(l \in \mathbb{Z})$, we want zero sample value.
Let Daubechies filter with length $4(D=3)$

$$
h_{0}[n]: \begin{array}{ccccc}
\underset{0}{\uparrow} \\
\substack{\uparrow \\
0} & h_{1} & h_{2} & \ldots & h_{3} \\
\Lambda_{3} \\
\hline
\end{array}
$$

In the Haar case, $\left(1-z^{-1}\right)$ represents a High pass filter.
Here we consider the Daubechies filter with length 4 so two $\left(1-z^{-1}\right)$ in the High pass filter which means $\left(1-z^{-1}\right)^{2}$ factor in HPF.

Similarly, low pass filter has a factor $\left(1-z^{-1}\right)^{2}$.
A Daubechies low pass filter with length 4 is given by

$$
H_{0}(Z)=h_{0}+h_{1} z^{-1}+h_{2} z^{-2}+h_{3} z^{-3}
$$

We can write this equation in the factor of $\left(1-z^{-1}\right)^{2}$ i.e.

$$
H_{0}(Z)=\left(1+z^{-1}\right)^{2}\left(1+B_{0} z^{-1}\right)
$$

In the above equation, we need three zeros.
Two zeros are already chosen at unit circle which are $-1,-1$ and one zero is selected based on value of B_{0}. This value can be obtained by comparing the above two equations.
Expanding the above two equations

$$
\begin{aligned}
& H_{0}(Z)=\left(1+2 z^{-1}+z^{-2}\right)\left(1+B_{0} z^{-1}\right) \\
& H_{0}(Z)=1+\left(2+B_{0}\right) z^{-1}+\left(1+2 B_{0}\right) z^{-2}+B_{0} z^{-3}
\end{aligned}
$$

The dot product of the impulse response of LPF with its even shifts must be zero. We will use this constraint to find the value of B_{0} in the next lecture.

