WAVELETS AND MULTIRATE DIGITAL SIGNAL PROCESSING

Lecture 13: Conjugate Quadrature Filter Bank Prof. V.M.Gadre, EE, IIT Bombay

1 Introduction

We continue in this lecture to build upon the particular class of filter bank which we have introduced in the previous lecture called a Conjugate Quadrature Filter(CQF) bank.

2 Conjugate Quadrature Filter bank

For the perfect reconstruction system we must first do away aliasing. The alias cancellation equation for the two band filter bank is given by

$$G_0(Z)H_0(-Z) + G_1(Z)H_1(-Z) = 0$$
$$\frac{G_1(Z)}{G_0(Z)} = -\frac{H_0(-Z)}{H_1(-Z)}$$

Equating the numerator and denominator we get the relation between $G_0(Z)$, $H_1(-Z)$, $G_1(Z)$ and $H_0(-Z)$ as

$$G_1(Z) = -H_0(-Z)$$

$$G_0(Z) = H_1(-Z)$$

The relation between the analysis HPF (high pass filter) and analysis LPF (low pass filter) called a conjugate quadrature relationship, is given by

$$H_1(Z) = z^{-D} H_0(-Z^{-1})$$

Here z^{-D} term is used to introduce causality. Putting $Z = e^{j\omega}$ in the above equation we get the frequency response equation as

$$H_1(Z) = z^{-D} H_0(-Z^{-1})|_{Z=e^{j\omega}} H_1(e^{j\omega}) = e^{-j\omega D} H_0(-e^{-j\omega})$$

The magnitude response is given by

$$|H_1(e^{j\omega})| = |e^{-j\omega D}H_0(-e^{-j\omega})|$$

$$|H_1(e^{j\omega})| = |e^{-j\omega D}||H_0(-e^{-j\omega})|$$

$$|H_1(e^{j\omega})| = |H_0(-e^{-j\omega})|$$

 $H_0(Z)$ is a Low pass filter with a real impulse response (real coefficients), therefore

$$H_0(e^{-j\omega}) = \overline{H_0(e^{j\omega})}$$

The magnitude response of LPF $H_0(Z)$ is symmetric along the magnitude axis and phase response is anti-symmetric along the frequency axis ω .

$$H_0(-e^{-j\omega}) = H_0(e^{-j(\omega \pm \pi)})$$

NOTE: LPF with cutoff frequency $\frac{\pi}{2} \stackrel{\text{(With shift by } \pi \text{ on } \omega)}{\rightleftharpoons}$ HPF with cutoff frequency $\frac{\pi}{2}$ We have shown,

 $H_1(Z) = z^{-D} H_0(-Z^{-1})$

For the perfect reconstruction the equation must satisfy,

$$G_0(Z)H_0(Z) + G_1(Z)H_1(Z) = C_0 z^{-D}$$

$$H_1(-Z)H_0(Z) - H_0(-Z)H_1(Z) = C_0 z^{-D}$$

$$(-1)^{-D} z^{-D} H_0(Z^{-1})H_0(Z) - H_0(-Z) z^{-D} H_0(-Z^{-1}) = C_0 z^{-D}$$

We need the following for perfect reconstruction systems,

$$(-1)^{-D}H_0(Z^{-1})H_0(Z) - H_0(-Z)H_0(-Z^{-1}) = C_0$$

If we consider the Haar filter then the relationship between $H_0(Z)$ and $H_1(Z)$ is given by,

$$H_0(Z) = 1 + z^{-1}$$

 $H_0(-Z^{-1}) = 1 - z$

The above equation is non-causal so to make it causal by inserting delay, we get the below equation,

$$z^{-D}H_0(-Z^{-1}) = z^{-D}(1-z)$$

Here z^{-D} retains causality. If D is odd,

$$H_0(Z)H_0(Z^{-1}) + H_0(-Z)H_0(-Z^{-1}) = -C_0$$

$$H_0(Z)H_0(Z^{-1}) + H_0(-Z)H_0(-Z^{-1}) = \text{Constant}$$

Putting $Z=e^{j\omega}$, we get the above equation in the frequency domain as,

$$H_0(e^{j\omega})H_0(e^{-j\omega}) + H_0(-e^{j\omega})H_0(-e^{-j\omega}) = \text{Constant}$$

For real impulse response we have,

13 - 2

Above equation is called the power complementary equation. For perfect reconstruction system,

$$H_0(Z)H_0(Z^{-1}) + H_0(-Z)H_0(-Z^{-1}) = \text{Constant}$$

Lets assume $\kappa_0(Z) = H_0(Z)H_0(Z^{-1})$

 $\kappa_0(Z) + \kappa_0(-Z) = \text{Constant}$

We are going to choose even length of $H_0(Z)$, *i.e.* $D \longrightarrow \text{Odd}$

$$\begin{array}{cccc} h[n]: & h_0 & h_1 & h_2 & \dots & h_D \\ & \uparrow & & \uparrow & & \uparrow \\ n & & & & \uparrow \\ n & & & & \uparrow \\ \end{array}$$

Similarly, $H_0(Z^{-1})$ is given by,

$$h[n]: \begin{array}{ccc} h_D \dots & h_2 & h_1 & h_0 \\ \uparrow & \uparrow & & \uparrow \\ n & -D & & 0 \end{array}$$

Here $H_0(Z)H_0(Z^{-1})$ corresponds to their convolution in time domain

$$(\begin{array}{cccc} h_0 & h_1 & h_2 & \dots & h_D) \\ \uparrow \\ 0 & & \uparrow \\ D & & \uparrow \\ -D & & \uparrow \\ \end{array}) (\begin{array}{cccc} h_D & \dots & h_2 & h_1 & h_0) \\ \uparrow \\ -D & & \uparrow \\ 0 \end{array})$$

Let impulse response h[k] be as given below

$$\begin{array}{ccc} h[k]: & h_0 & h_1 & h_2 & \dots & h_D \\ & & \uparrow & & \uparrow & & \uparrow \\ & & & & \uparrow & & & \uparrow \\ \end{array}$$

And impulse response g[k] is given below which is mirror image of h[k], that means g[k] = h[-k]

$$g[k]: \begin{array}{ccc} h_D \dots & h_2 & h_1 & h_0 \\ & \uparrow & & \uparrow & & \uparrow \\ & -D & & & \uparrow & & 0 \end{array}$$

Similarly g[n-k] is shown below

$$g[n-k]: \begin{array}{c} h_0 \ h_1 \ h_2 \ \dots \ h_D \\ \uparrow \\ n \end{array}$$

The convolution between h[k] and g[k] is given

$$\kappa_0[n] = \sum_{k=-\infty}^{k=+\infty} h[k]g[n-k]$$

Here h[k] is causal and filter length is (D + 1). The convolution at the sample n is y[n]. Shown below is the multiplication of h[k] and g[k] (which is shifted by n samples)

In Z-domain $\kappa_0(Z) = H_0(Z)H_0(Z^{-1})$. The m^{th} sample of the filter $k_0[m]$ is $< h[k], h[k \pm m] >$ Let m = 2 and filter length 4 (D = 3)

$$k_0[2] = h_0 h_2 + h_1 h_3$$

If m = -2 and filter length 4 (D = 3)

$$k_0[-2] = h_0 h_2 + h_1 h_3$$

That means the convolution between h[n] and h[-n] is symmetrical.

$$\kappa_0(Z) + \kappa_0(-Z) = \text{Constant}$$

 $\frac{1}{2} \{ \kappa_0(Z) + \kappa_0(-Z) \} = \text{Constant}$

From the above equation the summation $\frac{1}{2} \{\kappa_0(Z) + \kappa_0(-Z)\}$ represents the nonzero sample value at even location and zero sample value at the odd location.

Let $\kappa_0(Z)$ correspond to the sequence $k_0[n]$, $\frac{1}{2} \{\kappa_0(Z) + \kappa_0(-Z)\}$ impulse response is shown below.

 $k_0[n] \rightarrow \bigotimes \rightarrow \text{ non-zero at even } \& \text{ zero location} \\ \uparrow \\ \dots 1 \ 0 \ 1 \ 0 \ 1 \ 0 \ \dots \\ \uparrow \\ 0 \\ \end{bmatrix}$

But from the equation $\frac{1}{2} \{\kappa_0(Z) + \kappa_0(-Z)\} = \text{Constant}$, we want the non-zero sample value only at zero location and zero sample value for odd and even location.

So at the even location m = 2l and $m \neq 0$ and $(l \in \mathbb{Z})$, we want zero sample value.

Let Daubechies filter with length 4 (D = 3)

$$\begin{array}{ccc} h_0[n]: & h_0 & h_1 & h_2 & \dots & h_3 \\ & \uparrow & & & \uparrow & & \uparrow & \\ & & & & & \uparrow & & & \uparrow & \\ \end{array}$$

In the Haar case, $(1 - z^{-1})$ represents a High pass filter.

Here we consider the Daubechies filter with length 4 so two $(1 - z^{-1})$ in the High pass filter which means $(1 - z^{-1})^2$ factor in HPF.

Similarly, low pass filter has a factor $(1 - z^{-1})^2$.

A Daubechies low pass filter with length 4 is given by

$$H_0(Z) = h_0 + h_1 z^{-1} + h_2 z^{-2} + h_3 z^{-3}$$

We can write this equation in the factor of $(1 - z^{-1})^2$ *i.e.*

$$H_0(Z) = (1 + z^{-1})^2 (1 + B_0 z^{-1})$$

In the above equation, we need three zeros.

Two zeros are already chosen at unit circle which are -1, -1 and one zero is selected based on value of B_0 . This value can be obtained by comparing the above two equations. Expanding the above two equations

$$H_0(Z) = (1 + 2z^{-1} + z^{-2})(1 + B_0 z^{-1})$$

$$H_0(Z) = 1 + (2 + B_0)z^{-1} + (1 + 2B_0)z^{-2} + B_0 z^{-3}$$

The dot product of the impulse response of LPF with its even shifts must be zero. We will use this constraint to find the value of B_0 in the next lecture.