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1 Introduction

We continue in this lecture to build upon the particular class of filter bank which we have
introduced in the previous lecture called a Conjugate Quadrature Filter(CQF) bank.

2 Conjugate Quadrature Filter bank

For the perfect reconstruction system we must first do away aliasing. The alias cancellation
equation for the two band filter bank is given by

G0(Z)H0(−Z) +G1(Z)H1(−Z) = 0

G1(Z)

G0(Z)
= −H0(−Z)

H1(−Z)

Equating the numerator and denominator we get the relation between G0(Z), H1(−Z), G1(Z)
and H0(−Z) as

G1(Z) = −H0(−Z)

G0(Z) = H1(−Z)

The relation between the analysis HPF (high pass filter) and analysis LPF (low pass filter)
called a conjugate quadrature relationship, is given by

H1(Z) = z−DH0(−Z−1)

Here z−D term is used to introduce causality. Putting Z = ejω in the above equation we get
the frequency response equation as

H1(Z) = z−DH0(−Z−1)|Z=ejω
H1(e

jω) = e−jωDH0(−e−jω)

The magnitude response is given by

|H1(e
jω)| = |e−jωDH0(−e−jω)|

|H1(e
jω)| = |e−jωD||H0(−e−jω)|

|H1(e
jω)| = |H0(−e−jω)|

H0(Z) is a Low pass filter with a real impulse response (real coefficients), therefore
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H0(e
−jω) = H0(ejω)

The magnitude response of LPF H0(Z) is symmetric along the magnitude axis and phase
response is anti-symmetric along the frequency axis ω.

H0(−e−jω) = H0(e
−j(ω±π))

NOTE: LPF with cutoff frequency
π

2

(With shift by π on ω)

 HPF with cutoff frequency

π

2

We have shown,

H1(Z) = z−DH0(−Z−1)

For the perfect reconstruction the equation must satisfy,

G0(Z)H0(Z) +G1(Z)H1(Z) = C0z
−D

H1(−Z)H0(Z)−H0(−Z)H1(Z) = C0z
−D

(−1)−Dz−DH0(Z
−1)H0(Z)−H0(−Z)z−DH0(−Z−1) = C0z

−D

We need the following for perfect reconstruction systems,

(−1)−DH0(Z
−1)H0(Z)−H0(−Z)H0(−Z−1) = C0

If we consider the Haar filter then the relationship between H0(Z) and H1(Z) is given by,

H0(Z) = 1 + z−1

H0(−Z−1) = 1− z

The above equation is non-causal so to make it causal by inserting delay, we get the below
equation,

z−DH0(−Z−1) = z−D(1− z)

Here z−D retains causality.
If D is odd,

H0(Z)H0(Z
−1) +H0(−Z)H0(−Z−1) = −C0

H0(Z)H0(Z
−1) +H0(−Z)H0(−Z−1) = Constant

Putting Z = ejω , we get the above equation in the frequency domain as,

H0(e
jω)H0(e

−jω) +H0(−ejω)H0(−e−jω) = Constant

For real impulse response we have,

H0(e
−jω) = H0(ejω)

H0(e
jω)H0(ejω) +H0(e

j(ω±π))H0(ej(ω±π)) = Constant

|H0(e
jω)|2 + |H0(e

j(ω±π))|2 = Constant
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Above equation is called the power complementary equation.
For perfect reconstruction system,

H0(Z)H0(Z
−1) +H0(−Z)H0(−Z−1) = Constant

Lets assume κ0(Z) = H0(Z)H0(Z
−1)

κ0(Z) + κ0(−Z) = Constant

We are going to choose even length of H0(Z) ,i.e. D −→ Odd

h[n]
↑
n

: h0
↑
0

h1 h2 . . . hD
↑
D

Similarly, H0(Z
−1) is given by,

h[n]
↑
n

: hD
↑

−D

. . . h2 h1 h0
↑
0

Here H0(Z)H0(Z
−1) corresponds to their convolution in time domain

(h0
↑
0

h1 h2 . . . hD
↑
D

)
⊗

(hD
↑

−D

. . . h2 h1 h0
↑
0

)

Let impulse response h[k] be as given below

h[k] : h0
↑
0

h1 h2 . . . hD
↑
D

And impulse response g[k] is given below which is mirror image of h[k], that means g[k] = h[−k]

g[k] : hD
↑

−D

. . . h2 h1 h0
↑
0

Similarly g[n− k] is shown below

g[n− k] : h0
↑
n

h1 h2 . . . hD
↑

n+D

The convolution between h[k] and g[k] is given

κ0[n] =
k=+∞∑
k=−∞

h[k]g[n− k]

Here h[k] is causal and filter length is (D + 1).
The convolution at the sample n is y[n].
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Shown below is the multiplication of h[k] and g[k] (which is shifted by n samples)

In Z-domain κ0(Z) = H0(Z)H0(Z
−1).

The mth sample of the filter k0[m] is < h[k], h[k ±m] >
Let m = 2 and filter length 4 (D = 3)

k0[2] = h0h2 + h1h3

If m = −2 and filter length 4 (D = 3)

k0[−2] = h0h2 + h1h3

That means the convolution between h[n] and h[−n] is symmetrical.

κ0(Z) + κ0(−Z) = Constant
1

2
{κ0(Z) + κ0(−Z)} = Constant

From the above equation the summation 1
2
{κ0(Z) + κ0(−Z)} represents the nonzero sample

value at even location and zero sample value at the odd location.
Let κ0(Z) correspond to the sequence k0[n], 1

2
{κ0(Z) + κ0(−Z)} impulse response is shown

below.
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But from the equation 1
2
{κ0(Z) + κ0(−Z)} = Constant, we want the non-zero sample value

only at zero location and zero sample value for odd and even location.

So at the even location m = 2l and m 6= 0 and (l ∈ Z), we want zero sample value.

Let Daubechies filter with length 4 (D = 3)

h0[n] : h0
↑
0

h1 h2 . . . h3
↑
3

In the Haar case, (1− z−1) represents a High pass filter.

Here we consider the Daubechies filter with length 4 so two (1 − z−1) in the High pass filter
which means (1− z−1)2 factor in HPF.

Similarly, low pass filter has a factor (1− z−1)2.

A Daubechies low pass filter with length 4 is given by

H0(Z) = h0 + h1z
−1 + h2z

−2 + h3z
−3

We can write this equation in the factor of (1− z−1)2 i.e.

H0(Z) = (1 + z−1)2(1 +B0z
−1)

In the above equation, we need three zeros.

Two zeros are already chosen at unit circle which are −1,−1 and one zero is selected based on
value of B0. This value can be obtained by comparing the above two equations.
Expanding the above two equations

H0(Z) = (1 + 2z−1 + z−2)(1 +B0z
−1)

H0(Z) = 1 + (2 +B0)z
−1 + (1 + 2B0)z

−2 +B0z
−3

The dot product of the impulse response of LPF with its even shifts must be zero. We will use
this constraint to find the value of B0 in the next lecture.
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