WAVELETS AND MULTIRATE DIGITAL SIGNAL PROCESSING Lecture 6: The Haar Filter Bank
 Prof.V.M.Gadre, EE, IIT Bombay

1 Introduction

In this lecture our aim is to implement Haar MRA using appropriate filter banks. In the analysis part we decompose given function in $y_{v 0}$ and $y_{w 0}$. Decomposition of corresponding sequence is carried out in terms of wavelet function $\psi(t)$ and scaling function $\phi(t)$. After this is done we explore signal reconstruction using $y_{v 0}$ and $y_{w 0}$. Earlier, we have seen that we can divide the real axis (number line) into various equally spaced blocks which then constitute a space. For example, let us split the line into blocks of width 1 as shown below. Corresponding

Figure 1: Number Line
to Figure 1, we have basis functions of V_{0} and W_{0}. If the same functions were used over a period of half $\left(\frac{1}{2}\right)$, we have the spaces V_{1} and W_{1} and by halving or doubling the width we achieve the whole range of spaces.

$$
\{0\} \subset \ldots \subset V_{-2} \subset V_{-1} \subset V_{0} \subset V_{1} \subset V_{2} \subset \ldots
$$

2 Analysis part

Once we have decided the space in which we are operating, we can create a piecewise approximation of given function. Consider a function $y(t) \in V_{1}$ defined between [-1,3]. The number written in between the interval indicates piecewise constant amplitude for that interval.

Figure 2: $y(t) \in V_{1}$
This continuous function can be associated with the sequence

$$
y[-2]=4, y[-1]=7, y[0]=10, y[1]=16, y[2]=14, y[3]=11, y[4]=3, y[5]=-1
$$

$y[n]$ is an approximation of $y(t)$ over period $\left[\frac{n}{2}, \frac{n+1}{2}\right]$ in the space V_{1}.
In general, we write

$$
y(t)=\sum_{n=-\infty}^{\infty} y[n] \phi(2 t-n)
$$

where $\phi(2 t-n)$ is shifted version of basis function of V_{1} shown in figure 3 .

Figure 3: Basis function of V_{1}
Now we decompose space V_{1} in two subspaces V_{0} and W_{0} as

$$
V_{1}=V_{0} \bigoplus W_{0}
$$

Corresponding to these subspaces we obtain two functions $y_{v 0}$ and $y_{w 0}$. So, for a given $y(t) \in V_{1}$ we can split it in two components $y_{v 0}(t)$ and $y_{w 0}(t)$ which are projections of $y(t)$ on the V_{0} and W_{0} subspaces, respectively.
Note that this is after the whole analysis part (after the decimation operation). These functions can be represented as shown in figure 4.

Figure 4: Projection of $y(t)$ over subspaces V_{0}, W_{0}
The above representations graphically demonstrate scaled and shifted combinations of the bases to get the original signal (sequence).
We define $a[n]$ as the input and $b_{1}[n]$ and $b_{2}[n]$ as the output.

$$
\begin{aligned}
& b_{1}[n]=\frac{1}{2}(a[n]+a[n-1]) \\
& b_{2}[n]=\frac{1}{2}(a[n]-a[n-1])
\end{aligned}
$$

This is equivalent to

$$
\begin{gathered}
b_{1}[n]=\frac{1}{2}(y[n]+y[n-1]) \\
6-2
\end{gathered}
$$

Figure 5: Graphical representation of $y_{v 0}$ and $y_{w 0}$

Figure 6: Filter Bank: Analysis Part

$$
b_{2}[n]=\frac{1}{2}(y[n]-y[n-1])
$$

Here, $b_{1}[n]$ and $b_{2}[n]$ are sequences having the same length and order as $y[n]$ whereas we want them to be shorted and one order lesser than $y[n] . b_{1}[n]$ and $b_{2}[n]$ must be modified somehow to get $y_{v 0} \in V_{0}$ and $y_{w 0} \in W_{0}$ respectively. This is performed by decimation (down-sampling). Taking Z-transform on both the sides, we get

$$
B_{1}(Z)=\frac{1}{2}\left(1+z^{-1}\right) Y(Z)
$$

Figure 7: Filter Bank: Analysis Part

$$
B_{2}(Z)=\frac{1}{2}\left(1-z^{-1}\right) Y(Z)
$$

This is followed by the decimation operation to remove unwanted data. Hence, the Analysis filter bank is as shown in figure 6 .

3 Synthesis Part

To synthesize $y(t)$ from $y_{v 0}(t)$ and $y_{w 0}(t)$, in continuous time, we can write $y(t)=y_{v 0}(t)+y_{w 0}(t)$, however it is required to do some work in discrete time. We again write all the three sequences as,

$$
\begin{gathered}
y[n]=\{4,7, \underset{\uparrow}{10}, 16,14,11,3,-1\} \\
y_{v 0}[n]=\left\{\frac{11}{2}, 13, \frac{25}{2}, 1\right\} \\
y_{w 0}[n]=\left\{\frac{-3}{2},-3, \frac{3}{2}, 2\right\}
\end{gathered}
$$

Upsampler: To 'outdo' or 'overcome' decimation operation, we define operation of upsampling by symbol

Figure 8: Upsampler

$$
\begin{aligned}
x_{\text {out }}[n] & =x_{\text {in }}\left[\frac{n}{2}\right], & & \text { where } n \text { is multiple of } 2 \\
& =0, & & \text { otherwise }
\end{aligned}
$$

Basically upsampler expands the input sequence and it does so by adding zero in between successive samples.

If $x_{i n}[n]=y_{v 0}[n]$, then $x_{o u t}$ is given by

$$
x_{\text {out }}[n]=\left\{\frac{11}{2}, 0,13,0, \frac{25}{2}, 0,1,0\right\}
$$

and similarly, $y_{w 0}[n]$ on upsampling gives,

$$
x_{\text {out }}[n]=\left\{\frac{-3}{2}, 0,-3,0, \frac{3}{2}, 0,2,0\right\}
$$

If the sequences obtained after upsampling ($y_{v 0}$ and $y_{w 0}$) are added and subtracted alternately, we can recover original sequence. We can combine the operations with proper up-sampling and delay to get back the original. Figure 9 shows how an operation of upsampling is done using signal flow diagram. The delay is used to give the output in proper order.

Figure 9: Signal flow diagram with up-sampler by two

Figure 10: Filter Bank: Synthesis Part
Figure 10 shows the synthesis part of 2-band perfect reconstruction filter bank.
In this way, filter bank is used to implement Analysis and Synthesis aspects of Haar MRA.

