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1 Introduction

In the previous lecture, we saw an equivalence between functions and vectors w.r.t. inner
product and Parsevals theorem. We saw how functions can be considered as generalized vectors.
Another dimension of same is replacing work with functions with work with sequences. It is
possible to work with sequences in place of functions. Sequences are much easier to deal with
the computer. It can be processed in discrete time by a computer that further produces a
sequence. If whatever we are doing with a sequence maps exactly with what we want do with
an original continuous time functions then it is an added advantage. This is true for the spaces
contained in V0 contained in V1 contained in V2 and so on in the L2(R) ladder shown below.

{0} ⊂ V−2 ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2 ⊂ . . .

Basis functions for V0 subspace is given by {Φ(t− n)}n∈Z. The function Φ(t− n) for t = n is
shown below. This is also an orthonormal basis for V0 as

Figure 1: Basis function for V0

〈Φ(t− n), Φ(t−m)〉 = 0, n 6= m
= 1, n = m

where n, m ∈ Z.

2 Function and Sequence

To have an idea between function and sequence consider the function x(t) ∈ V0

x(t) = . . . +
(1

2

)
Φ(t + 1) +

(−3

4

)
Φ(t) +

(3

2

)
Φ(t− 1) + (4)Φ(t− 2) + . . .
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There is an equivalence between x(t) and sequence. So, corresponding sequence is

x[n] = [. . . ,
1

2
,−3

4
,
3

2
, 4, . . .]

↑
The function x(t) belongs to V0 ∈ L2(R) and thus sequence also belongs to a set of square
summable sequences. If a function x(t) is square integrable i.e.(

∫∞
−∞ |x(t)|2dt < ∞) then

corresponding sequence is square summable i.e. (
∑∞

n=−∞ |x[n]|2 < ∞). Here, we use a notion
that x(t) ∈ L2(R), implies x[n] ∈ l2(Z).
In general, lp(Z) is a linear space of sequences such that

(
∞∑

n=−∞

|x[n]|p < ∞)

We have just shown a correspondence that if x(t) ∈ V0 ∈ L2(R) then x[n] ∈ l2(Z). Note
x[n] is the sequence of coefficients of expansion of x(t) with respect to an ORTHONORMAL
basis. If the basis is orthonormal then there is mapping between inner products. For example,
suppose x(t), y(t) ∈ V0 ,then inner product in continuous time is given by

〈x(t), y(t)〉 =

∫ ∞

−∞
x(t)y(t)dt

= K0

∞∑
n=−∞

x[n]y[n] (1)

where K0 is a constant. Therefore, what we do in context of continuous time function can be
equivalently done in the context of discrete domain for corresponding sequence. So, eventually
we are forgetting continuous functions and dealing with sequence x[n]. What is the motivation
behind this? Our motive is to extract an incremental information from going one subspace to
another in a ladder. Now we will see how to move from one resolution to another or extract the
incremental information from the function. Note that this process corresponds to going from
low resolution subspaces to high resolution in L2(R) ladder of subspaces. Consider y(t) ∈ V1.
Corresponding sequence y[n] is

[. . . , 4, 7, 10, 16, 11, 3,−1 . . .]

↑
The relationship between y(t) and y[n] is

y(t) =
∑
n∈Z

y[n]Φ(2t− n)

where

Φ(2t− n) = 1,
n

2
< t <

n + 1

2
= 0, otherwise

Now consider an orthogonal decomposition of a function in V1, into functions in V0 and W0
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Figure 2: y(t)

denoted by

V1 = V0

⊕
W0

where
W0 = span{Ψ(t− n)}n∈Z

V0 = span{Φ(t− n)}n∈Z

V1 is the orthogonal sum of subspaces V0 and W0. The idea of orthogonal decomposition is to
decompose a function into functions of smaller spaces such that decomposed components are
orthogonal to each other or their inner product is zero. For example, a room can be considered
as an orthogonal sum of 2-d floor and a multiple of 1-d vectors perpendicular to the floor.
Any vector in the plane of the floor is perpendicular to the vectors which are perpendicular to
the floor and their inner product will also be zero. The same concept can be generalized to
N-dimensional space.
We have seen the equivalence between functions and sequences with respect to square integra-
bility and inner products. Now consider the angle between two functions or vectors defined in
terms of their inner product. There exists equivalence with respect to angles also. As we are
considering functions and sequences as generalized vectors, angle between two functions x(t)
and y(t) in any subspace is defined by

cos(θ) =
〈x(t), y(t)〉
‖ x ‖‖ y ‖

where θ is angle between x(t) and y(t) and x(t), y(t) ∈ L2(R).
To check whether it is possible to decompose a sequence in terms of other sequences, consider
x1(t) ∈ V0 and x2(t) ∈ W0 denoted by solid and dashed lines respectively, as shown in figure 3
below. Note that 〈x1(t), x2(t)〉 = 0 and thus x1(t) and x2(t) are orthogonal to each other.
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Figure 3: Functions x1(t) and x2(t)

Take any function in V1 in the open interval ]n, n + 1[. It can be written as a summation
of function belonging to V0 and and a function belonging to W0 from figure 3. Thus we
can decompose a function in V1 in functions in V0 and W0 in a unique way. Can we make
corresponding construction on the sequences?
Consider

V1: p(t) → p[n]

W0: q0(t) → q0[n]

V0: p0(t) → p0[n]

here p0(t) and q0(t) are orthogonally decomposed functions of p(t) thus, p(t) = p0(t) + q0(t)
and p[n], p0[n] and q0[n] are corresponding sequences. To check whether p[n] = p0[n] + q0[n]
holds or not, consider the three sequences p[n], p0[n] and q0[n] of V1, V0 and W0 subspaces. If
unit interval in V0 and W0 subspaces is ]n, n + 1[ then the corresponding interval in V1 and
W1 subspaces is ]2n, 2n + 2[ and the previous example is reconsidered for the corresponding
sequences in the figures below. Note that function in V1 has the value C1 at 2n and C2 at

Figure 4: Sequence corresponding to function p(t) ∈ V1

(2n+1). Thus, p[2n] = C1, p[2n + 1] = C2.
Similarly,

p0[n] =
(C1 + C2)

2
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Figure 5: Sequence corresponding to function q0(t) ∈ W0

Figure 6: Sequence corresponding to function p0(t) ∈ V0

q0[n] =
C1− C2

2

Note that the relation among p[n], p0[n] and q0[n] is not p[n] = p0[n] + q0[n], but

p0[n] =
p[2n] + p[2n + 1]

2
(2)

q[n] =
p[2n]− p[2n + 1]

2
(3)

Above equations show that p0[n] and q0[n] are outputs of discrete time filters. Then the Discrete
time filter with x[n] and y[n] as input and output respectively is given by

y[n] =
x[n] + x[n + 1]

2
(4)

3 Downsampler

In the previous example if p[n] is input to the filter given by equation (4), then output is not
p0[n]. For output to be equal to p0[n], the filter must be driven by a system with input xin and
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output xout related by xout[n] = xin[2n].
Now consider the system which does this operation. It retains only the even samples of the
input sequence and removes the odd samples. Note that it locates the even samples at half
of the original sample number. For example if xin[n] = [6 3 5 2 7 8 3 4] is the input to this
system then output xout[n] = [6 5 8 4 ]. Note that xout[0] comes from xin[0], xout[2] = xin[4] and
thus xout[n] = xin[2n]. Such a system is called Downsampler or Decimator. Figure 7 shows
decimation by 2.

Figure 7: Downsampling by 2

Thus to implement the equation (2) we need a discrete time filter given by equation (4) followed
by a downsampler by 2. This helps to construct a sequence p0[n] from p[n].
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