WAVELETS AND MULTIRATE DIGITAL SIGNAL PROCESSING
 Lecture 4: Algebra of Linear Vector Spaces, Bases, etc
 Prof.V.M.Gadre, EE, IIT Bombay

1 Generalized vectors:

A vector quantity or vector, provides the magnitude as well as the direction of a specific quantity.
Example: When giving directions to a point, it is not enough to say that it is x miles away, but the direction of those x miles must also be provided for the information to be useful. (Note that physical quantities are represented by Scalars, such as temperature, volume and time etc.)

Figure 1: Graphical representation of vectors
Given a coordinate system in three dimensions, a vector may thus be represented by an ordered set of three components which represent its projections v_{1}, v_{2}, v_{3} on the three coordinate axes.

$$
v=\left[v_{1}, v_{2}, v_{3}\right]
$$

The three most commonly used coordinate systems are rectangular, cylindrical, and spherical. Alternatively, a vector may be represented by the sum of the magnitudes of its projections on three mutually perpendicular axes:

$$
\bar{v}=v_{1} \hat{u_{1}}+v_{2} \hat{u_{2}}+v_{3} \hat{u_{3}}
$$

The n-dimensional coordinate systems based on the Euclidean space (Cartesian space or n space) represented by R^{n} or E^{n}, under n-dimensions and n-vectors. Usually, the Euclidean space is formed by $\left(X_{1}, X_{2}, X_{3}, \ldots, X_{n}\right)$ where n is equal to 8 .

Parallelogram law of vector:

Let us take an example, in this using parallelogram law we can get the resultant vector. The resultant vector can be calculated as:

$$
\begin{aligned}
\bar{v} & =\overline{\tilde{v}}_{1}+\overline{v_{2}} \\
\text { where } \overline{\tilde{v}_{1}} & =k_{1} \hat{u_{1}} \\
\text { and } \overline{\tilde{v}_{2}} & =k_{2} \hat{u_{2}} \\
\text { then } \bar{v} & =k_{1} \hat{u_{1}}+k_{2} \hat{u_{2}}
\end{aligned}
$$

Figure 2: Parallelogram law of vectors

2 Relationship between functions, sequences, vectors:

One can intimately relate processing of a function to processing of equivalent sequence, and whatever we are doing to try and gain information from or modify a function can be done equivalently by processing or modifying that sequence corrosponding to function. A sequence is like a vector and each n is a different dimension of that vector.
An infinite (countably infinite) dimension vector is a sequence $x[n], n \in \mathbb{Z}$, where n is index and \mathbb{Z} is set of integers.
Now, we would like to extend other ideas of vectors to this context of infinite dimension vector.

Dot product of vectors:

Let,
$\overline{e_{1}}=e_{11} \hat{u_{1}}+e_{12} \hat{u_{2}}$ and $\overline{e_{2}}=e_{21} \hat{u_{1}}+e_{22} \hat{u_{2}}$ then dot product is $\overline{e_{1}} \overline{e_{2}}=e_{11} e_{21}+e_{12} e_{22}$. That means it is nothing but sum of products of corresponding coordinates.

Let two n-dimensional vectors as
$\overline{e_{1}}: e_{11}, e_{12}, \ldots, e_{1 N}$ and $\overline{e_{2}}: e_{21}, e_{22}, \ldots, e_{2 N}$ the dot product of these two vectors is $\left\langle\overline{e_{1}} \overline{e_{2}}\right\rangle=\sum_{k=1}^{N} e_{1 k} e_{2 k}$. These are also called as orthogonal coordinates.

Let two sequences, say $x_{1}[n], x_{2}[n], n \in Z$, the 'dot product' or 'inner product' is $\left\langle x_{1}, x_{2}\right\rangle$,
where

$$
\left\langle x_{1}, x_{2}\right\rangle=\sum_{n=-\infty}^{+\infty} x_{1}[n] x_{2}[n]
$$

In $2-D, 3-D$ space, we will calculate magnitude from the dot product, but in general $n-D$ space, we will use norm. Generally norm squared represents energy.
Let vector x : essentially a sequence $x[n], n \in Z$, then the 'norm' of sequence $x=\|x\|$ should be $\left\langle x_{1}, x_{2}\right\rangle^{1 / 2}$
$\|x\| \geq 0$ and $\|x\|=0$ iff $x=0$ i.e. $x[n]=0 \forall n \in Z$
If x_{1} and x_{2} are real,

$$
\begin{aligned}
\left\langle x_{1}, x_{2}\right\rangle & =\sum_{n=-\infty}^{+\infty} x_{1}[n] x_{2}[n] \\
\langle x, x\rangle & =\sum_{n=-\infty}^{+\infty} x^{2}[n]
\end{aligned}
$$

As long as $x[n]$ is real $\forall n \in \mathbb{Z}$, this will satisfy norm requirements.
A small change will be applied for complex sequences as follows

$$
\left\langle x_{1}, x_{2}\right\rangle=\sum_{n=-\infty}^{+\infty} x_{1}[n] \overline{x_{2}[n]}
$$

Properties of Inner product:

1.Conjugate community:

$$
\begin{aligned}
\left\langle x_{1}, x_{2}\right\rangle & =\overline{\left\langle x_{2}, x_{1}\right\rangle} \\
& =\sum_{n=-\infty}^{+\infty} x_{1}[n] \overline{x_{2}[n]} \\
& =\sum_{n=-\infty}^{+\infty} x_{2}[n] \overline{x_{1}[n]} \\
\left\langle x_{1}, x_{2}\right\rangle & =\overline{\left\langle x_{2}, x_{1}\right\rangle}
\end{aligned}
$$

2. Linear in first argument :

$$
\begin{aligned}
\left\langle a_{1} x_{1}+a_{2} x_{2}, x_{3}\right\rangle & =a_{1}\left\langle x_{1}, x_{3}\right\rangle+a_{2}\left\langle x_{2}, x_{3}\right\rangle \\
& =\sum_{n=-\infty}^{+\infty}\left(a_{1} x_{1}+a_{2} x_{2}\right) x_{3} \\
& =\sum_{n=-\infty}^{+\infty} a_{1}\left(x_{1} x_{3}\right)+a_{2}\left(x_{2} x_{3}\right) \\
\left\langle a_{1} x_{1}+a_{2} x_{2}, x_{3}\right\rangle & =a_{1}\left\langle x_{1}, x_{3}\right\rangle+a_{2}\left\langle x_{2}, x_{3}\right\rangle
\end{aligned}
$$

3. Positive definite :

$$
\begin{aligned}
& \langle x, x\rangle=\sum x[n] \cdot x[n] \\
& \langle x, x\rangle=0 ; \quad \text { iff } \quad x[n]=0 \quad \forall n
\end{aligned}
$$

Extension to uncountably infinite dimension:

For any ' t ', $t \in \mathbb{R}$ is a different dimension and $x(t), t \in \mathbb{R}$, means $x(t)$ for a particular ' t 'th' coordinate. Then the 'dot product' or 'inner product' between two functions $x(t)$ and $y(t)$ is

$$
\langle x, y\rangle=\int_{-\infty}^{+\infty} x(t) y(t) d t
$$

Parseval's Theorem:

The Parseval's theorem states that the inner product of any two functions in time domain is equal to the inner product of those two functions in frequency domain.
Let $x(t)$ be a function and $\widehat{x}(\nu)$ or $\widehat{x}(\Omega)$ is its fourier transform (in Hz or in radians) and defined as

$$
\widehat{x}(\nu)=\int_{-\infty}^{+\infty} x(t) e^{-j 2 \pi \nu t} d t \quad \text { or } \quad \widehat{x}(\Omega)=\int_{-\infty}^{+\infty} x(t) e^{-j \Omega t} d t \quad \text { where } \quad \Omega=2 \pi \nu
$$

Let $y(t)$ be a function and $\widehat{y}(\nu)$ or $\widehat{y}(\Omega)$ is its fourier transform (in Hz or in radians) and defined as

$$
\widehat{y}(\nu)=\int_{-\infty}^{+\infty} y(t) e^{-j 2 \pi \nu t} d t \quad \text { or } \quad \widehat{y}(\Omega)=\int_{-\infty}^{+\infty} y(t) e^{-j \Omega t} d t \quad \text { where } \quad \Omega=2 \pi \nu
$$

The inner product of these in time domain is

$$
\langle x, y\rangle=\int_{-\infty}^{+\infty} x(t) \overline{y(t)} d t
$$

and it is equal to the inner product in frequency domain given by

$$
\langle\widehat{x}, \widehat{y}\rangle=\int_{-\infty}^{+\infty} \widehat{x}(\nu) \overline{\widehat{y}(\Omega)} d \Omega
$$

That means $\langle x, y\rangle=\langle\widehat{x}, \widehat{y}\rangle$
The function $x(t)$ can be reconstructed from its frequency components as

$$
x(t)=\int_{-\infty}^{+\infty} \widehat{x}(\Omega) e^{-j \Omega t} d \Omega
$$

Applications of Parseval's Theorem:

The Parseval's theorem is often used in many areas like physics and engineering etc, and it is written many of the times as

$$
\int_{-\infty}^{+\infty}|x(t)|^{2} d t=\int_{-\infty}^{+\infty}|\widehat{x}(\nu)|^{2} d \nu
$$

where $\widehat{x}(\nu)$ represents the continuous Fourier transform of $x(t)$ and ' ν ' represents the frequency component of x.

From this equation, the theorem tells that the total energy contained in a function $x(t)$ over all time ' t ' is equal to the total energy of the its Fourier Transform $\widehat{x}(\nu)$ over all frequency ' ν '.

For discrete time signals, the theorem becomes:

$$
\sum_{n=-\infty}^{+\infty}|x[n]|^{2}=\frac{1}{2 \pi} \int_{-\pi}^{+\pi}\left|\widehat{x}\left(e^{j \omega}\right)\right|^{2} d \omega
$$

where $\widehat{x}\left(e^{j \omega}\right)$ is the Discrete-Time Fourier transform (DTFT) of x and ' ω ' represents the angular frequency (in radians per sample) of x.

For the Discrete Fourier transform (DFT), the relation becomes:

$$
\sum_{n=0}^{N-1}|x[n]|^{2}=\frac{1}{N} \sum_{k=0}^{N-1}|\widehat{x}[k]|^{2}
$$

where $\widehat{x}[k]$ is the DFT of $x[n]$ and ' N ' is length of sequence in both domain .

Relation between continuous functions and sequences:

Let $x(t)$ be a continuous function and let $\phi(t)$ be a unit step function in $[0,1]$ interval, then $x(t)$ can be written as

$$
x(t)=\ldots+C_{-1} \phi(t+1)+C_{0} \phi(t)+C_{1} \phi(t-1)+C_{2} \phi(t-2)+\ldots
$$

It can be graphically represented as shown in figure 3 .

Figure 3: Relation between continuous functions and sequences
Equivalance between continuous functions and sequences will be dealt in greater detail in subsequent lectures.

