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1 Introduction

HAAR was a mathematician, who has given an idea that any continuous function can be rep-
resented in the form of discontinuous functions, and by doing so one can go to any level of
continuity that one desires. That is, we start from a very discontinuous function and make it
smoother and smoother by adding more and more discontinuous functions (additional informa-
tion) to it. This idea is opposite to the idea of Fourier transform. As in Fourier transform the
discontinuous function is represented in the form of smooth continuous function. Representa-
tion of the continuous function in the form of discontinuous function has its own importance in
digital communication because in digital signal processing we are doing the same by convert-
ing smooth signal into a stream of bits (discontinuous function). This is illustrated by some
examples.

Example 1

In a digital camera, the image is divided into small elements (called pixel), now consider an
image of dimension 204 X 92 pixels. In each pixel, area of pixel is represented by a constant
number which represents the average intensity and colour in that area. The effect of changing
the resolution of the same image is seen in figure 1.

Figure 1: Resolution difference

Example 2

Consider an audio output. It is one dimensional signal which can be plotted against time.
Let the output be as shown in figure 2. Audio signal is divided in small intervals of time ‘T’.
Lets represent each interval with a piecewise constant approximation. A piece wise constant
approximation C0 over the open interval (0,T) can be computed as

C0 =
1

T

∫ T

0

x(t) dt

(Open interval is the interval excluding end points). And for any interval of size T is given by

Cn =
1

T

∫
T

x(t) dt
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Figure 2: audio signal

i.e. integration over the time interval T. Similarly, for interval of size T/2,

Cn,T/2 =
1

T/2

∫
T
2

x(t) dt

If a time interval of length ‘T’ is divided into two time intervals of length T/2, we get two
averages computed by the above formula. The figure 3 clarifies this concept further.

Figure 3: Average of T and T/2

AT =
1

T

∫ T

0

x(t) dt

A1,T/2 =
2

T

∫ T/2

0

x(t) dt

A2,T/2 =
2

T

∫ T

T/2

x(t) dt

The central concept in HAAR multi resolution analysis is to relate these three terms (AT , A1,T/2, A2,T/2).
The HAAR wavelet is hidden in this relationship. It can be easily observed that, the average
of A1,T/2 and A2,T/2 gives AT , i.e.

AT =
A1,T/2 + A2,T/2

2
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Thus a function can be approximately represented by addition of piecewise constant fucn-
tions. We can go on reducing the interval by half to whatever degree of accuracy we desire.
This is illustrated in the figure 4. Each different line (dot dash, dash-dash, bold line with

Figure 4: intervals of 2T,T and T/2

squares) represents a piecewise approximation in its own way, with different resolution. Let
the function represented in above figure using dot-dash line be f1(t) and the bold line with
squares be f2(t) then, the additional information obtained by representing the signal as f2(t)
is given by

f2(t)− f1(t)

It is shown in figure 5.

Figure 5: f2(t)− f1(t)

2 The Haar wavelet

Consider the following function shown in the figure 6. This function is represented as ψ(t).
By using scalar multiplication and delaying, we can see that f2(t)− f1(t) can be reconstructed
from ψ(t). Thus,

f2(t)− f1(t) = − h1 × ψ(t/T ) + h2 × ψ(
t− T
T

)

The function ψ(t) is called the Haar wavelet. In general when we start with ψ(t) we can
construct a function ψ( t−τ

s
) as a building block, where ‘s’ is positive real and τ should be real.

The variable ‘s’ dilates ψ(t) and ‘τ ’ translates ψ(t). The variable τ is called the translation
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Figure 6: f2(t)− f1(t)

index and the variable ‘s’ is called the dilation variable. If we consider time intervals of
length T/2 for piecewise constant approximation then the value of ‘s’ is T/2, if length of time
interval is T then s=T. It means the single function ψ(t) allows you to bring in resolution step
by step to any level of detail. Thus, by dividing T into smaller subdivisions of T/2, T/4 and
so on, any function xa(t) can be made arbitrarily close to original function x(t). If xe(t)
denotes the error due to approximation, it can be expressed as

xe(t) = x(t)− xa(t)

ζ =

∫ ∞
−∞
| xe(t) |2 dt

Where, ζ is the squared error. What we mean by arbitrarily close is that for any fixed value of
ζ(> 0), we can always find a positive integer m such that a piecewise constant approximation
of x(t) with an interval of T/2m satisfies the requirement of ζ.
Important: Signal can be represented in piece wise constant form if and only if it has finite
energy.

3 Lk norms of x(t)

A function have finite energy content implies and is implied by its L2 norm being finite. The
L2 norm of a signal is defined as

L2 norm of x(t) =

[∫ ∞
−∞
| x(t) |2 dt

] 1
2

In general, we can define the Lp norm of x(t) as

Lp norm of x(t) =

[∫ ∞
−∞
| x(t) |p dt

] 1
p

where p is any real number. The L∞ norm of x(t) is defined as

L∞ norm of x(t) = lim
p→∞

[∫ ∞
−∞
| x(t) |p dt

] 1
p

Significance of L∞ norm

As the value of p increases, large values in x(t) are being emphasized. This happens because
for a large p, the integral will have a large contribution from higher values in x(t).

2 - 4



Space L2

L2(R) is said the to be the space of all real functions whose L2 norm is finite.
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