WAVELETS AND MULTIRATE DIGITAL SIGNAL PROCESSING
Lecture 2: Haar Multiresolution analysis
Prof.V. M. Gadre, EE, IIT Bombay

Self Evaluation Quizzes

Q 1. Define L_{p} norm.
Ans. L_{p} norm of a function $x(t)$ is defined as,

$$
\left\{\int_{-\infty}^{\infty}|x(t)|^{p} d t\right\}^{1 / p}
$$

Q 2. What is $L_{2}(\mathbb{R})$ space.
Ans. It is a space of functions whose L_{2} norm is finite.
Q 3. Why in general, only functions in $L_{2}(\mathbb{R})$ are considered for piecewise constant approximations?
Ans. The L_{2} norm signifies the energy of a signal. In general most of the real time signals have finite energy. So we are interested in the signals which have finite energy. So functions in $L_{2}(\mathbb{R})$ are considered for piecewise constant approximations.

Q 4. Calculate the L_{2} norm of the following function $x(t)$, where $x(t)=1-|t|$ in the interval $[-1,1]$ and zero elsewhere.
Ans. Since the function is symmetric between -1 to 0 and 0 to 1 , the norm will be twice that of the value calculated in any one of the above two intervals.
Hence L_{2} norm of $x(t)=\left[2 \int_{0}^{1}|(1-t)|^{2} d t\right]^{\frac{1}{2}}=\left[2 \int_{-1}^{0}|(1+t)|^{2} d t\right]^{\frac{1}{2}}=\sqrt{2 / 3}$
Q 5. Give an example of function which does not exist in $L_{2}(\mathbb{R})$.
Ans. All the exponential functions having geometric ratio greater than 1 does not exist in $L_{2}(\mathbb{R})$. For example consider function 2^{t} for $t>0$. Its L_{2} norm does not exist because $\left[\int_{0}^{\infty}\left|2^{t}\right|^{2} d t\right]$ does not converge.

Q 6. Give some examples of functions for the following cases:
(a) Function that exists in $L_{1}(\mathbb{R})$ but does not exist in $L_{2}(\mathbb{R})$.
(b) Function that exists in $L_{2}(\mathbb{R})$ but does not exist in $L_{1}(\mathbb{R})$.
(c) Functions which does not exist in both the spaces.

Ans.
(a) Consider the function $\frac{1}{\sqrt{t}}$ in the interval $(0,1]$ and 0 else where. Its L_{1} norm converges but L_{2} norm does not converge.
(b) Consider the function $\frac{1}{t}$ in the interval $[1, \infty)$. Its L_{2} norm converges, but L_{1} norm diverges.
(c) All the periodic functions such as $\sin (t)$ and $\cos (t)$ does not exist in both $L_{1}(\mathbb{R})$ and $L_{2}(\mathbb{R})$.

Q 7. Give the axioms that are to be satisfied by a vector space.
Ans. A real vector space is a set X with a special element 0 called as a zero vector, and three operations:

Addition: Given two elements x, y in X, one can form the sum $x+y$, which is also an element of X.
Inverse: Given an element x in X, one can form the inverse $-x$, which is also an element of X.
Scalar multiplication: Given an element x in X and a real number c, one can form the product $c x$, which is also an element of X.

These operations must satisfy the following axioms:
Additive axioms: For every x, y, z in X, we have
a) $x+y=y+x$.
b) $(x+y)+z=x+(y+z)$.
c) $0+x=x+0=x$.
d) $(-x)+x=x+(-x)=0$.

Multiplicative axioms: For every x in X and real numbers c, d, we have
a) $0 x=0$.
b) $1 x=x$.
c) $(c d) x=c(d x)$.

Distributive axioms: For every x, y in X and real numbers c, d, we have
a) $c(x+y)=c x+c y$.
b) $(c+d) x=c x+d x$. Scalar multiplication: Given an element x in X and a real number c, one can form the product $c x$, which is also an element of X.

