
EXERCISES

A good starting point is to prove all the results not proved in detail during the lectures.
Then one can progress to various exercises provided in the reference textbooks.

MODULE 1:

1. Lecture 5: The Dirac equation gives ρ = ψ†ψ and ~j = ψ†~αψ. Show that in the
non-relativistic limit, these reduce to the corresponding expressions following from
the Schrödinger equation.

2. Lecture 5: Prove the Gordon decomposition identity for arbitrary spinors ψ1 and ψ2

satisfying the Dirac equation, cψ2γ
µψ1 = 1

2m [ψ2p
µψ1 − (pµψ2)ψ1]−

i
2mpν(ψ2σ

µνψ1),

where pµ ≡ ih̄∂µ and σµν ≡ i
2 [γµ, γν].

Show that when ψ1 = ψ2, the two combinations on the r.h.s. (kinetic and spin) satisfy
the current conservation condition separately.

3. Lecture 5: Show that ψψ = ±1 for free particle solutions of the Dirac equation.

4. Lecture 6: For a relativistic electron, find the energy levels in a constant magnetic
field ~B = Bẑ.

5. Lecture 7: Show that [~α · ~p, β(~Σ · ~L+ h̄)] = 0.

6. Lecture 8: The Lenz vector, ~M = 1
2m (~p×~L−~L×~p)− Ze2

r ~r, is conserved for a particle
moving in a Coulomb potential in classical mechanics (it defines the major axis of the
orbit). It is not conserved for a Dirac particle in a Coulomb potential, but show that
~M · ~Σ is conserved, and connects states with the same j but opposite parities (e.g.
2s1/2 and 2p1/2).

7. Lecture 8: Construct the relativistic spinor eigenstates for the Coulomb problem in
the Dirac basis:
(a) First combine the spherical harmonics Ylm with spin states sz = ±1

2 to obtain

two-component eigenstates Yjm
l of the total angular momentum j = l ⊕ 1

2
.

(b) Show that ~σ · r̂Yjm
j∓1/2 = −Yjm

j±1/2.

(c) Then combine Yjm
l states with appropriate coefficients to obtain four-component

eigenstates ψ for given j,m, k.

8. Lecture 10: Show that i~Σ · ~∇× ~E + 2~Σ · ~E × ~p is Hermitian.

9. Lecture 10: The Dirac equation for a fermion with anomalous magnetic moment has
an extra interaction, κeh̄

4mcσµνF
µν . Consider its non-relativistic expansion, and find

the effect of passing a polarised neutron beam through a static non-uniform electric
field.

10. Lecture 10: For reflection of a Dirac fermion from a barrier, calculate the reflection
and transmission coefficients for the current jz = cψ†αzψ, i.e. evaluate (jz)r/(jz)i

and (jz)t/(jz)i.

11. Lecture 10: Consider a Dirac fermion in a one dimensional potential well,
V (x) = eA0(x) = −V0θ(a− |x|). For a Dirac bound state with spin down:
(a) Find the wavefunction ψ(x) for |x| > a and |x| < a when V0 < mc2.
(b) Give all the boundary conditions to be satisfied by ψ(x) at x = ±a.
(c) For given fixed a, find the minimum value of V0 that just binds the nth bound
state (i.e. En = mc2). What is the wavefunction for such a state?



12. Lecture 13: Using the chiral symmetry (i.e. γ5 symmetry) of the Dirac operator
(iD/−m), show that if λ is an eigenvalue of iD/, so is −λ.

13. Lecture 13: Argue that any 4 × 4 complex matrix can be expressed as a linear com-
bination (with complex coefficients) of the 16 γ-matrices {S, V, T, A, P}.

14. Lecture 13: Compare the projection operators for helicity and chirality. Show that
they are the same for massless Dirac particles, but are different for massive Dirac
particles.

15. Lecture 14: Fermi statistics is defined in terms of the creation and annihilation oper-
ators, a† and a respectively, with the rules: a|0〉 = 0, a†|0〉 = |1〉, a2 = 0, (a†)2 = 0,
aa† + a†a = 1. With mixing of particle and antiparticle modes, it is possible to have
an operator c = c† = a+ a† for Majorana fermions. Show that c|0〉 = |1〉, c|1〉 = |0〉,
c2 = 1. Find the analogue of the number operator a†a for Majorana fermions?

16. Lecture 15: Construct a Lorentz invariant, Hermitian and probability conserving
interaction term for a Dirac fermion with anomalous electric dipole moment. What
happens to the parity and time reversal transformations in the presence of this term?

17. Lecture 15: Construct operators for parity, charge conjugation and time reversal
symmetries in (a) Weyl and (b) Majorana representations. Which of these discrete
symmetries are satisfied by (a) Weyl and (b) Majorana fermions, and which ones are
not? What is the combined PCT operation in the two cases?

18. Lecture 17: Low energy electrons in graphene have pseudo-spin (related to orbital
angular momentum) as well as the usual spin. Consider the situation when a magnetic
field B is applied perpendicular to the graphene sheet. Derive the Landau level

spectrum, i.e. En =
√

2h̄|e|Bv2
F (n+ 1

2
± 1

2
), and the pattern of Zeeman splitting of

the energy levels.

MODULE 2:

1. Lecture 19: Unitary representations of continuous groups are conveniently parametrised
in terms of their Hermitian generators as U(α) = exp(i

∑

a αaTa). Then the group
composition rule demands that the product U(β)U(α)U(−β)U(−α) must be of the
form U(γ). Expand around identity and deduce that the group algebra must close,
i.e. [Ta, Tb] = ifabcTc with real structure constants fijk.

2. Lecture 19: Show that the Lorentz group generators, Jµν = i(xµ∂ν − xν∂µ),
satisfy the algebra, [Jµν , Jρσ] = i(gνρJµσ − gµρJνσ − gνσJµρ + gµσJνρ).

3. Lecture 22: Derive the commutation rules for the Pauli-Lubanski vector,
[Wµ,W ν ] = iǫµνλσWλPσ.

4. Lecture 23: For the Wigner rotation, W (Λ, p) = L−1(Λp)ΛL(p),
show that W (R, p) = R when Λ is an ordinary rotation R.

5. Lecture 23: For a massless particle, light-front coordinates are convenient, i.e. x± =
x0 ± x3. Show that W− = 0 in this case, while W 1,W 2,W+ satisfy the algebra of
the two dimensional Euclidean group E(2).

6. Lecture 23: Obtain the algebra of the Galilean group from the non-relativistic limit
of the Poincaré group generators ~J, ~K, ~P ,H. Find the generators, and their allowed
values of quantum numbers, that label the single particle states in this case.



7. Lecture 25: Show that the spinors of the free fermion basis obey:
(a) ωr†(ǫr~p) ω

r′

(ǫr′~p) = E
mc2 δrr′

(b)
∑4

r=1 ω
r
α(ǫr~p) ω

r†
β (ǫr~p) = E

mc2 δαβ

MODULE 3:

1. Lecture 27: Show that the Feynman propagator for a Dirac fermion, SF (p) = p/+m
p2−m2+iǫ ,

ǫ→ 0+, propagates the positive energy component forward in time and the negative
energy component backward in time.

2. Lecture 27: Suppose the vacuum is replaced by a Fermi gas with Fermi momentum
kF . How does that modify the Feynman propagator? What is the change in the low
density limit?

3. Lecture 29: Prove the following identities:
(a) γµa/b/c/γ

µ = −2c/b/a/
(b) γµa/b/c/d/γ

µ = 2(d/a/b/c/+ c/b/a/d/)

4. Lecture 31: Consider the local gauge transformation, Aµ(x) → Aµ(x) − ∂µΛ(x),
ψ(x) → U(x) ψ(x), U(x) = eieΛ(x)/h̄c. Show that the gauge connection transforms
as exp[− ie

h̄c

∫ x2

x1

Aµ(x) dxµ] → U(x2) exp[− ie
h̄c

∫ x2

x1

Aµ(x) dxµ] U−1(x1). Deduce that

exp[− ie
h̄c

∮

Aµ(x) dxµ] and ψ(x2) exp[− ie
h̄c

∫ x2

x1

Aµ(x) dxµ] ψ(x1) are gauge invariant
quantities.

5. Lecture 32: The polarisation vector for photons ǫµ has four components. For free pho-
tons, argue that complete gauge fixing to radiation gauge keeps only two transverse
components as physical degrees of freedom.

6. Lecture 32: Construct the polarisation vector for a virtual photon describing a static
electric field.

7. Lecture 38: Expressions for unpolarised Compton scattering and crossing symmetry
can be used to obtain results for e+e− → γγ. The 1s state of positronium (bound state
of e+ and e−) decays by annihilation into photons. There are two states, depending
on the spin pairing, corresponding to S = 0 and S = 1. Using discrete symmetries,
deduce which of the two states can decay into two photons (the other has to decay
into three photons), and obtain its lifetime.

8. Lecture 39: Calculate the leading order (tree level) unpolarised cross-section for
Bhabha scattering, e+e− → e+e−.

9. Lecture 44: Find the leading order amplitude for scattering of photons (i.e. γγ → γγ)
using the Feynman rules. Evaluate the Dirac trace using current conservation. Show
that the result is finite, without evaluating the momentum integral. For photons of
energies much smaller than the electron mass, express the scattering amplitude in
terms of powers of the electromagnetic field strength Fµν .

10. Lecture 44: Consider a charged scalar field Φ = ρeiφ, which under the electromagnetic
gauge symmetry transforms as Φ(x) → eiqΛ(x)/h̄cΦ(x) (q = 2e in the case of Cooper
pairs). Superconductivity arises when this field condenses, i.e. ρ(x) ≈ constant. Show
that in the condensed phase, the gauge invariant term |DµΦ|2 becomes proportional
to (qAµ + ∂µφ)2. Find the resultant value of the photon mass.


