NPTEL COURSE SELECTED TOPICS IN MATHEMATICAL PHYSICS

V. Balakrishnan

Department of Physics, Indian Institute of Technology Madras Chennai 600 036, India

QUIZ 1

- 1. Are the statements in quotation marks true or false?
 - (a) "Every derivative of an analytic function of a complex variable is also an analytic function."
 - (b) Let u and v denote the real and imaginary parts of an analytic function of z = x + iy.
 "The curves u(x, y) = constant and v(x, y) = constant intersect each other at right angles."
 - (c) "An entire function must necessarily be singular at $z = \infty$, unless it is just a constant."
 - (d) "A meromorphic function cannot have an essential singularity at the point at infinity."
 - (e) "The radius of convergence of the power series $\sum_{n=1}^{\infty} n^{1/n} z^n$ is zero."
 - (f) "The function $\sin(\pi/z)$ has an accumulation point of poles at z = 0."
 - (g) "The relation $\Gamma(z)\Gamma(1-z) = \pi \csc \pi z$ is only valid in the region $0 < \operatorname{Re} z < 1$."
 - (h) Let *a* be a positive constant. " $f(z) = \int_a^{\infty} dt \, t^z \, e^{-t}$ is an entire function of *z*."
 - (i) "The power series $\sum_{n=1}^{\infty} z^n/n^4$ is absolutely convergent at all points inside and on the unit circle |z| = 1."

- (j) "The series $\sum_{n=0}^{\infty} (n+1)^{z-1}$ converges in the region $\operatorname{Re} z > 0$."
- (k) Consider the Möbius transfomation $z \mapsto w = (2z + \sqrt{3})/(\sqrt{3}z + 2)$. "This is a hyperbolic Möbius transformation."
- (l) Consider $z \mapsto w = (2z + \sqrt{3})/(\sqrt{3}z + 2)$ once again. "The transformation maps the circle |z| = 1 to the circle |w| = 1."
- (m) Legendre's differential equation is $(1 z^2)\phi'' 2z\phi' + \nu(\nu + 1)\phi = 0$. "Since this equation is invariant under the interchange $\nu \leftrightarrow -\nu - 1$, all its solutions must also be invariant under this interchange."
- (n) "The function $f(t) = e^{t^{3/2}}$, where $t \ge 0$, has no Laplace transform."

(o) "If
$$[\mathcal{L}f](s) = \int_0^\infty dt \, e^{-st} f(t)$$
, then $[\mathcal{L}^2 f](s) = \int_0^\infty dt \, f(t)/(s+t)$."

- (p) "The product $\Gamma(z) \zeta(z)$ tends to a finite, nonzero limit as $z \to -2n$, where $n = 1, 2, \dots$ "
- (q) Let φ(t) be a linear, causal, retarded response function, and φ(s) its Laplace transform.
 "The corresponding dynamic susceptibility χ(ω) is the analytic continuation of φ(s) to s = -iω."
- (r) "The logarithmic derivative of the Riemann zeta function, $\zeta'(z)/\zeta(z)$, has a simple pole at z = 1 with residue equal to -1."
- (s) "The only pole of the logarithmic derivative of the Riemann zeta function is at z = 1."
- (t) Consider the function space L₂(-∞, ∞).
 "Any eigenfunction of the Fourier transform operator is also an eigenfunction of the parity operator, but the converse is not necessarily true."

- 2. Fill in the blanks in the following.
 - (a) The real part of an entire function f(z) is given by $u(x, y) = (\cosh x) (\cos y)$. Hence the function is $f(z) = \cdots$.
 - (b) coth z is a periodic function of z, with a period equal to \cdots .
 - (c) The singularity of the polynomial $p(z) = z^n + a_1 z^{n-1} + \cdots + a_n$ at $z = \infty$ is \cdots . (Select one from the following: (i) a removable singularity (ii) a simple pole (iii) a pole of order n (iv) an essential singularity.)
 - (d) The residue at $z = \infty$ of the polynomial $p(z) = z^n + a_1 z^{n-1} + \dots + a_n$ is $\operatorname{Res}_{z=\infty} p(z) = \cdots$
 - (e) Let C denote the circle |z| = 2 traversed once in the positive sense. Then $\oint_C dz/(z^4 1) = \cdots$.
 - (f) Let a and b be two different complex numbers, each with nonzero real and imaginary parts. The radius of convergence of the power series

$$f(z) = \sum_{n=0}^{\infty} \frac{\Gamma(n+a)}{\Gamma(a)} \frac{\Gamma(b)}{\Gamma(n+b)} \frac{z^n}{n!}$$

is $R = \cdots$.

- (g) Given that $\sum_{n=1}^{\infty} 1/n^4 = \pi^4/90$, it follows that $\sum_{n=0}^{\infty} 1/(2n+1)^4 = \cdots$.
- (h) Given that $\int_0^\infty dx (\sin kx)/x = \frac{1}{2}\pi$ (where k > 0), the value of the integral $\int_0^\infty dx (1 \cos x)/x^2 = \cdots$. (*Hint*: Integrate k over a suitable range.)
- (i) The numerical value of the product

$$\Gamma\left(-\frac{5}{4}\right)\Gamma\left(-\frac{3}{4}\right)\Gamma\left(-\frac{1}{4}\right)\Gamma\left(\frac{1}{4}\right)\Gamma\left(\frac{3}{4}\right)\Gamma\left(\frac{5}{4}\right)\Gamma\left(\frac{7}{4}\right)\Gamma\left(\frac{9}{4}\right) = \cdots$$

- (j) The value of the integral $\int_0^1 dt \, t^{-1/2} \, (1-t)^{-1/2} = \cdots$.
- (k) Let an arbitrary initial point $z^{(0)}$ in the complex plane be mapped to the point $z^{(n)}$ under n iterations of the Möbius transfomation

$$z \mapsto (2z + \sqrt{3})/(\sqrt{3}z + 2).$$

As $n \to \infty$, $z^{(n)} \to \cdots$ for all $z^{(0)}$, with *one* exception.

- (l) Previous question continued: The exceptional point that does *not* tend to the limit point above is $z = \cdots$.
- (m) Under the Möbius transformation $z \mapsto w = (2z+3)/(z+2)$, the circle |z+2| = 1 is mapped to the circle \cdots .
- (n) The function $f(z) = \sqrt{z} \ln [(z-1)/(z+1)]$ has branch points at $z = \cdots$.
- (o) Let α and β be arbitrary complex numbers. The function

$$f(z) = (z^2 - 1)^{\alpha} / (z^2 + 1)^{\beta}$$

has branch points at $z = \cdots$.

- (p) The residue of $f(z) = \exp(z + z^{-1})$ at z = 0 is \cdots . (Express your answer in terms of a modified Bessel function.)
- (q) Given that the Laplace transform of sin t is $1/(s^2 + 1)$, it follows that the Laplace transform of sinh t is \cdots .
- (r) The generating function for the Hermite polynomial $H_n(z)$ is

$$e^{2tz-t^2} = \sum_{n=0}^{\infty} H_n(z) \frac{t^n}{n!}.$$

It follows that the Rodrigues formula for $H_n(z)$ is $H_n(z) = \cdots$.

(s) Let

$$f(x) = \begin{cases} 1, & |x| \le 1\\ 0 & |x| > 1. \end{cases}$$

If $\tilde{f}(k)$ denotes the Fourier transform of f(x), the value of the integral $\int_{-\infty}^{\infty} dk \ |\tilde{f}(k)|^2 = \cdots$.

(t) Consider a random walk on an infinite linear lattice whose sites are labelled by the integers. The walker jumps from any site j to j-1 with a probability per unit time given by λq , and from j to j+1 with a probability per unit time given by λp ; further, the walker stays at the site j with probability per unit time given by λr . Here p, q and r are positive constants satisfying p + q + r = 1, and λ is a positive constant with the physical dimensions of $(\text{time})^{-1}$. Let P(j,t) be the probability that the walker is at the site j at time t. The differential equation satisfied by P(j,t) is $dP(j,t)/dt = \cdots$.

Quiz 1: Solutions

1. True or false:

(a) **T**

- (b) \mathbf{T}
- (c) **T**
- (d) \mathbf{F}
- (e) \mathbf{F}
- (f) **F**
- (g) \mathbf{F}
- (h) \mathbf{T}
- (i) **T**
- (j) **F**
- (k) **T**
- (l) \mathbf{T}
- (m) **F**
- (n) **T**
- (o) **T**
- (p) **T**
- (q) **T**
- (r) **T**
- (s) **F**
- (t) **T**

2. Fill in the blanks:

- (a) $f(z) = \cosh z$
- (b) $i\pi$
- (c) a pole of order n
- (d) 0
- (e) 0
- (f) ∞
- (g) $\pi^4/96$

(h)
$$\frac{1}{2}\pi$$

(i) $4\pi^4$
(j) π
(k) 1
(l) -1
(m) $|w-2| = 1$
(n) -1, 0, 1 and ∞
(o) 1, *i*, -1, -*i* and ∞
(o) 1, *i*, -1, -*i* and ∞
(p) $I_1(2)$
(q) $1/(s^2 - 1)$
(r) $H_n(z) = \left[\frac{d^n}{dt^n}e^{2tz-t^2}\right]_{t=0}$, which simplifies to $H_n(z) = (-1)^n e^{z^2} \frac{d^n}{dz^n}e^{-z^2}$.
(s) 4π
(t) $\frac{dP(j,t)}{dt} = \lambda \left[p P(j-1,t) + q P(j+1,t) - (p+q) P(j,t) \right]$

QUIZ 2

- 1. Are the statements in quotation marks true or false?
 - (a) "The function $\sin(1/z)$ does not have a Taylor series expansion in the neighborhood of z = 0."

(b) A function f(z) is defined by the power series $\sum_{n=0}^{\infty} z^{2n+1}/[n!(n+1)!]$ about the origin.

"f(z) is an entire function of z."

- (c) "The only singularity of $1/\Gamma(z)$ is a simple pole at z = 0."
- (d) "The Mittag-Leffler expansion of the gamma function is given by $\Gamma(z) = \sum_{n=0}^{\infty} (-1)^n / [(z+n) n!]$."
- (e) Let $f(z) = z + z^3 + z^9 + z^{27} + \cdots$ ad infinitum, for |z| < 1.

"f(z) cannot be analytically continued outside the unit circle."

- (f) "The power series $\sum_{n=1}^{\infty} (\ln n) z^n / n$ converges at all points on its circle of convergence."
- (g) "The function $f(z) = 1/(e^z 1)$ is a meromorphic function of z."
- (h) "Dispersion relations for the real and imaginary parts of a generalized susceptibility $\chi(\omega)$ can be derived only if the corresponding response function $\phi(t)$ decays to zero faster than any negative power of t, as $t \to \infty$."
- (i) "The derivative of the gamma function, $\Gamma'(z)$, has zero residue at each of its poles."
- (j) "The Legendre function of the second kind, $Q_{\nu}(z)$, has branch points in the z-plane even when ν is a positive integer."
- (k) "The Laplace transform of the function $f(t) = \cosh \pi t$ has no singularities in the region $\operatorname{Re} s > \pi$."

(1) Bessel's differential equation is $\left[z^2 \frac{d^2}{dz^2} + z \frac{d}{dz} + (z^2 - \nu^2)\right] f(z) = 0$, where ν is a parameter.

"If $\phi_{\nu}(z)$ is any solution of this equation, then $\phi_{-\nu}(z)$ must be equal to $\phi_{\nu}(z)$, apart from a possible multiplicative constant."

- (m) "The group $M\"ob(2, \mathbb{C})$ of Möbius transformations of the complex plane has continuous subgroups, but no discrete subgroups."
- (n) "The group Möb $(2, \mathbb{C})$ of Möbius transformations of the complex plane is isomorphic to the group SO(3, 1) of homogeneous proper Lorentz transformstions in (3 + 1)-dimensional spacetime."
- (o) "The Riemann surface of the function $f(z) = z^{1/2} (z-1)^{-1/3}$ has 6 sheets."
- (p) "It is possible to find a contour integral representation of the beta function B(z, w) that is valid for all complex values of both z and w."
- (q) "The Riemann zeta function $\zeta(z)$ cannot be continued analytically to the left of the line $\operatorname{Re} z = \frac{1}{2}$, because it has an infinite number of zeroes on that line."
- (r) "The Fourier transform operator in $\mathcal{L}_2(-\infty, \infty)$ has a finite number of eigenvalues, each of which is infinitely degenerate."
- (s) Let G(x, x') denote the Green function of the differential operator d^2/dx^2 where $x \in [-1, 1]$.

"As a function of x, G is continuous at x = x', but its derivative $\partial G/\partial x$ has a finite discontinuity at x = x'."

- (t) "The fundamental Green function of the Laplacian operator ∇^2 in fourdimensional Euclidean space is $G(\mathbf{r}, \mathbf{r}') = -1/[4\pi^2(\mathbf{r} - \mathbf{r}')^2]$."
- (u) Consider the diffusion equation in *d*-dimensional space, $\partial f/\partial t = D\nabla^2 f$ with boundary condition $f(\mathbf{r}, t) \to 0$ as $r \to \infty$ and initial condition $f(\mathbf{r}, 0) = \delta^{(d)}(\mathbf{r}).$

"The fundamental solution to this equation is a Gaussian in each Cartesian component of \mathbf{r} , for all positive integer values of the dimension d."

(v) The scattering amplitude for the scattering of a nonrelativistic particle of mass m in a central potential $\lambda V(r)$ is given by

$$f(k,\theta) = -\frac{m\lambda}{2\pi\hbar^2} \int d^3r \, e^{-i\mathbf{k}\,\cdot\cdot\,\mathbf{r}} \, V(r) \, \psi(\mathbf{r}),$$

where \mathbf{k}' is the scattered wave vector.

"This formula is valid only if the potential V(r) decays to zero as $r \to \infty$ more rapidly than any inverse power of r."

- (w) Continuation: "In the Born approximation, the scattering amplitude in the forward direction ($\theta = 0$) vanishes identically."
- (x) Continuation: "In the Born approximation, the imaginary part of the scattering amplitude vanishes identically."
- (y) Consider the Helmholtz operator $\nabla^2 + \mathbf{k}^2$ in three-dimensional space.

"The fundamental Green function of this operator, corresponding to outgoing spherical waves, is $G(\mathbf{r} - \mathbf{r}') = -e^{i\mathbf{k}\cdot(\mathbf{r}-\mathbf{r}')}/(4\pi|\mathbf{r}-\mathbf{r}'|)$."

(z) Consider the wave operator $(1/c^2) \partial^2/\partial t^2 - \nabla^2$ in (d+1)-dimensional spacetime, where c is the speed of light in a vacuum. Let $G^{(d)}(R,\tau)$ denote the causal retarded Green function of the operator.

" $G^{(d)}(R,\tau)$ vanishes identically when $(c\tau, \mathbf{R})$ is a time-like four-vector."

- (α) Continuation: " $G^{(d)}(R, \tau)$ is singular when $(c\tau, \mathbf{R})$ is a light-like four-vector."
- (β) Let $\mathbf{J} = (J_i, J_2, J_3)$ be the generators of rotations in three-dimensional space, satisfying the Lie algebra $[J_j, J_k] = i\epsilon_{jkl} J_l$.

"The lowest-dimensional, non-trivial, unitary representation of the generators is in terms of (2×2) matrices with complex elements."

- (γ) "The parameter space of the group SU(n) is doubly connected."
- (δ) "The first homotopy group of the parameter space of the special orthogonal group SO(n), for every $n \geq 3$, is \mathbb{Z}_2 ."

- 2. Fill in the blanks in the following.
 - (a) Given that the imaginary part of an entire function f(z) is

$$v(x,y) = e^{(x^2 - y^2)} \sin(2xy),$$

the function is $f(z) = \cdots$.

- (b) The meridian of longitude φ on the Riemann sphere is mapped into a straight line in the complex plane. The equation of this straight line is y = mx + c, where $m = \cdots$ and $c = \cdots$.
- (c) The region of absolute convergence in the complex z-plane of the power series $\sum_{n=0}^{\infty} \left[(n+1)/(n^2+1) \right] (\frac{1}{2}z)^n$ is \cdots .
- (d) The residue at infinity of the function $f(z) = (z z^{-1})^3$ is $\operatorname{Res}_{z \to \infty} f(z) = \cdots$.
- (e) Let $[z_1, z_2; z_3, z_4]$ denote the cross-ratio of the four points z_1, z_2, z_3 and z_4 in the complex plane. Then $[z_1, z_2; z_3, z_4] + [z_1, z_3; z_2, z_4] = \cdots$.
- (f) The Möbius transformation $z \mapsto w$ such that three given points z_1, z_2, z_3 are mapped respectively into three other given points w_1, w_2, w_3 is expressed by a relation between w and z that reads \cdots .
- (g) Under the Möbius transformation $z \mapsto w = (z+1)/(z+2)$, an infinitesimal area element δA centered at the point z = -3/2 is mapped to an element of area $\lambda \delta A$, where the value of λ is \cdots .
- (h) The Bernoulli numbers B_n are defined via the expansion $z/(e^z 1) = \sum_{n=0}^{\infty} B_n z^n/n!$. Therefore B_n is given by the contour integral $B_n = \cdots$. (You must specify both the integrand and the contour.)
- (i) The Chebyshev polynomial of the second kind, $U_n(\cos \theta)$, has the generating function

$$\frac{1}{1-2t\,\cos\,\theta+t^2} = \sum_{n=0}^{\infty} U_n(\cos\,\theta)\,t^n,$$

where $\theta \in [0, \pi]$. Therefore $U_n(\cos \theta)$ can be expressed as a contour integral in the *t*-plane given by $U_n(\cos \theta) = \cdots$. (You must specify both the integrand and the contour.)

- (j) Continuation: Evaluating the contour integral and simplifying the result, the final expression for $U_n(\cos \theta)$ is $U_n(\cos \theta) = \cdots$. (You must express your answer in terms of trigonometric functions of θ .)
- (k) Continuation: Hence the polynomial $U_1(\cos \theta)$ reduces to $U_1(\cos \theta) = \cdots$.
- (1) The function $f(z) = (z^2 + 2)^{1/3}$ has branch points at $z = \cdots$.

- (m) Express your answer in terms of a Bessel function: The residue of $f(z) = \exp(z - z^{-1})$ at z = 0 is $\underset{z=0}{\operatorname{Res}} f(z) = \cdots$.
- (n) The inverse Laplace transform of $\tilde{f}(s) = 1/(s^2 2s + 1)$ is $f(t) = \cdots$.
- (o) Let λ be a positive constant. The Laplace transform of the function

$$f(t) = \int_0^t dt_n \int_0^{t_n} dt_{n-1} \cdots \int_0^{t_2} dt_1 \, e^{-\lambda(t-t_1)}$$

is $\widetilde{f}(s) = \cdots$.

(p) Let

$$f(x) = \begin{cases} 1 - |x|, & |x| \le 1\\ 0, & |x| > 1. \end{cases}$$

If $\tilde{f}(k)$ denotes the Fourier transform of f(x), the value of the integral

$$\int_{-\infty}^{\infty} dk \ |\widetilde{f}(k)|^2 = \cdots .$$

(q) The positional probability distribution at any time $t \ge 0$ of a random walker on a square lattice with sites labelled by the integers (ℓ, m) is given by

$$P(\ell, m, t) = e^{-\lambda t} \left(p_1/q_1 \right)^{\ell/2} \left(p_2/q_2 \right)^{m/2} I_\ell \left(2\lambda t \sqrt{p_1 q_1} \right) I_m \left(2\lambda t \sqrt{p_2 q_2} \right),$$

where λ is the mean jump rate and p_i, q_i are directional probabilities such that $p_1 + q_1 + p_2 + q_2 = 1$. The leading asymptotic behavior of $P(\ell, m, t)$ at very long times $(\lambda t \gg 1)$ is given by $P(\ell, m, t) \sim \cdots$.

(r) The diffusion equation for the positional probability density of a particle diffusing on the x-axis in the region $-\infty < x \leq a$, in the presence of a constant force, is given by

$$\frac{\partial p(x,t)}{\partial t} = -c \frac{\partial p(x,t)}{\partial x} + D \frac{\partial^2 p(x,t)}{\partial x^2}$$

Here c and D are positive constants denoting the drift velocity and diffusion constant, respectively. p(x,t) is normalized to unity for all $t \ge 0$. There is a reflecting boundary at the point x = a. The boundary condition satisfied by p(x,t) at x = a is then given by \cdots .

- (s) Continuation: As $t \to \infty$, p(x, t) tends to the stationary probability density $p_{\rm st}(x)$. This quantity satisfies the ordinary differential equation \cdots .
- (t) Continuation: The normalized solution for $p_{st}(x)$ is $p_{st}(x) = \cdots$.
- (u) A quantum mechanical particle of mass m moving in one dimension has the Hamiltonian $H = p^2/(2m)$, where p is the momentum operator of the particle. Its momentum-space wave function at t = 0 is given to be $\phi(p)$. Therefore its momentum-space wave function at any time $t \ge 0$ is given by $\psi(p,t) = \cdots$.

(v) The scattering amplitude for a nonrelativistic particle of mass m in a central potential $\lambda V(r)$ is given, in the Born approximation, by

$$f_{\rm B}(k,\theta) = -\frac{2m\lambda}{\hbar^2 Q} \int_0^\infty dr \, r \, \sin\left(Qr\right) V(r),$$

where Q is the magnitude of the momentum transfer vector \mathbf{Q} . The forward scattering amplitude in the Born approximation is therefore given by the expression $f_{\rm B}(k,0) = \cdots$.

- (w) Continuation: The backward scattering amplitude in the Born approximation is therefore given by the expression $f_{\rm B}(k,\pi) = \cdots$.
- (x) Let $\mathbf{R} = \mathbf{r} \mathbf{r}'$ and $\tau = t t'$, as usual. Let $G^{(d)}(\mathbf{R}, \tau)$ denote the fundamental Green function of the Klein-Gordon operator $\Box + \mu^2$, where μ is a positive constant and $\Box = (1/c^2)(\partial^2/\partial t^2) - \nabla^2$, in (d+1)-dimensional spacetime. Then $G^{(d)}(\mathbf{R}, \tau)$ can be expressed in the form

$$G^{(d)}(\mathbf{R},\tau) = \frac{1}{(2\pi)^d} \int d^d \mathbf{k} \ \phi(\mathbf{k},\mathbf{R},\tau),$$

where $\phi(\mathbf{k}, \mathbf{R}, \tau) = \cdots$.

- (y) Let $\mathbf{J} = (J_1, J_2, J_3)$ denote the generators of rotations in three-dimensional space, and let ψ be an arbitrary angle. The quantity $e^{-iJ_1\psi}J_2 e^{iJ_1\psi}$, expressed as a linear combination of the generators, is \cdots .
- (z) Continuation: Let $\mathbf{n} = (n_1, n_2, n_3)$ be an arbitrary unit vector. Then the commutator $[\mathbf{J} \cdot \mathbf{n}, \mathbf{J}^2] = .$
- (α) The number of generators of the orthogonal group O(n) and the special orthogonal group SO(n) are, respectively, \cdots and \cdots .
- (β) The number of generators of the unitary group U(n) and the special unitary group SU(n) are, respectively, \cdots and \cdots .
- (γ) Let x and p denote the position and momentum operators of a quantum mechanical particle moving in one dimension, so that their commutator $[x, p] = i\hbar I$, where I is the unit operator. Let a be a real constant with the physical dimensions of length. Using Hadamard's Lemma, the operator $e^{iap/\hbar} x e^{-iap/\hbar}$ simplifies to

$$e^{iap/\hbar} x e^{-iap/\hbar} = \cdots$$

(δ) Continuation: Let *b* be a real constant with the physical dimensions of linear momentum. Once again, using Hadamard's Lemma, the operator $e^{-ibx/\hbar} p e^{ibx/\hbar}$ simplifies to

$$e^{-ibx/\hbar} p e^{ibx/\hbar} = \cdots$$

Quiz 2: Solutions

1. True or false:

(a) T

- (b) T
- (c) F
- (d) F
- (e) T
- (f) F
- (g) T
- (h) F
- (i) T
- (j) T
- (k) T
- (l) F
- (m) F
- (n) T
- (o) T
- (p) T
- (q) F
- (r) T
- (s) T
- (t) T
- (u) T
- (v) F
- (w) F
- (x) T
- (y) F
- ()) -
- (z) F
- (α) T
- (β) T
- (γ) F

 (δ) T

2. Fill in the blanks:

(a) $f(z) = e^{z^2}$. (b) $m = \tan \varphi$ and c = 0. (c) |z| < 2. (d) $\operatorname{Res}_{z=\infty} f(z) = -3.$ (e) 1. (f) $\frac{(w-w_2)(w_1-w_3)}{(w-w_2)(w_1-w_2)} = \frac{(z-z_2)(z_1-z_3)}{(z-z_2)(z_1-z_3)}$. (g) $\lambda = 16$ (h) $B_n = \frac{n!}{2\pi i} \oint_C \frac{dz}{z^n (e^z - 1)}$, where C encloses the origin once in the positive (i) $U_n(\cos \theta) = \frac{1}{2\pi i} \oint_C \frac{dt}{t^{n+1} (1-2t \cos \theta + t^2)}$, where C encloses the origin once in the positive sense (j) $U_n(\cos \theta) = \frac{\sin (n+1)\theta}{\sin \theta}$. (k) $U_1(\cos \theta) = 2 \cos \theta$ (1) $i\sqrt{2}, -i\sqrt{2}, \infty$. (m) $-J_1(2)$. (n) $t e^t$. (o) $1/[s(s+\lambda)^n]$. (p) $4\pi/3$. (q) $P(\ell, m, t) \sim \frac{(p_1/q_1)^{\ell/2} (p_2/q_2)^{m/2} \exp\left[-\lambda t \left(1 - 2\sqrt{p_1 q_1} - 2\sqrt{p_2 q_2}\right)\right]}{4\pi\lambda t (p_1 q_1 p_2 q_2)^{1/4}}$. (r) $\left[D \frac{\partial p}{\partial x} - c p \right]_{x=a} = 0.$ (s) $D \frac{d^2 p_{\rm st}(x)}{dx^2} - c \frac{d p_{\rm st}(x)}{dx} = 0.$ (t) $p_{\rm st}(x) = (c/D) e^{c(x+a)/D}$ (u) $\psi(p,t) = e^{-ip^2 t/(2m\hbar)} \phi(p).$ (v) $f_{\rm B}(k,0) = -\frac{2m\lambda}{\hbar^2} \int_0^\infty dr \, r^2 \, V(r).$ (w) $f_{\rm B}(k,\pi) = -\frac{m\lambda}{\hbar^2 k} \int_0^\infty dr \, r \, V(r) \, \sin{(2kr)}.$

- (x) $\phi(\mathbf{k}, \mathbf{R}, \tau) = c \,\theta(\tau) \,\frac{\sin \, c\tau k}{k} \, e^{i\mathbf{k}\cdot\mathbf{R}}.$
- (y) $J_2 \cos \psi + J_3 \sin \psi$.
- (z) 0.
- (α) $\frac{1}{2}n(n-1)$ and $\frac{1}{2}n(n-1)$.
- (β) n^2 and $n^2 1$.
- (γ) x + a. This result tells us why the momentum operator p is the generator of translations in position space.
- (δ) p + b. This result tells us why the position operator x is the generator of translations in momentum space.