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QUIZ 1

1. Are the statements in quotation marks true or false?

(a) “Every derivative of an analytic function of a complex variable is also an
analytic function.”

(b) Let u and v denote the real and imaginary parts of an analytic function of
z = x+ iy.
“The curves u(x, y) = constant and v(x, y) = constant intersect each other
at right angles.”

(c) “An entire function must necessarily be singular at z = ∞, unless it is just
a constant.”

(d) “A meromorphic function cannot have an essential singularity at the point
at infinity.”

(e) “The radius of convergence of the power series
∑∞

n=1 n
1/n zn is zero.”

(f) “The function sin (π/z) has an accumulation point of poles at z = 0.”

(g) “The relation Γ(z) Γ(1 − z) = π cosec πz is only valid in the region 0 <
Re z < 1.”

(h) Let a be a positive constant.
“f(z) =

∫∞
a
dt tz e−t is an entire function of z.”

(i) “The power series
∑∞

n=1 z
n/n4 is absolutely convergent at all points inside

and on the unit circle |z| = 1.”
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(j) “The series
∞∑
n=0

(n + 1)z−1 converges in the region Re z > 0 .”

(k) Consider the Möbius transfomation z �→ w = (2z +
√
3 )/(

√
3 z + 2).

“This is a hyperbolic Möbius transformation.”

(l) Consider z �→ w = (2z +
√
3 )/(

√
3 z + 2) once again.

“The transformation maps the circle |z| = 1 to the circle |w| = 1.”

(m) Legendre’s differential equation is (1− z2)φ′′ − 2zφ′ + ν(ν + 1)φ = 0.
“Since this equation is invariant under the interchange ν ↔ −ν − 1, all its
solutions must also be invariant under this interchange.”

(n) “The function f(t) = et
3/2

, where t ≥ 0, has no Laplace transform.”

(o) “If [Lf ](s) = ∫∞
0
dt e−st f(t), then [L2f ](s) =

∫∞
0
dt f(t)/(s+ t).”

(p) “The product Γ(z) ζ(z) tends to a finite, nonzero limit as z → −2n, where
n = 1, 2, . . . .”

(q) Let φ(t) be a linear, causal, retarded response function, and φ̃(s) its Laplace
transform.
“The corresponding dynamic susceptibility χ(ω) is the analytic continuation

of φ̃(s) to s = −iω.”

(r) “The logarithmic derivative of the Riemann zeta function, ζ ′(z)/ζ(z), has a
simple pole at z = 1 with residue equal to −1.”

(s) “The only pole of the logarithmic derivative of the Riemann zeta function
is at z = 1.”

(t) Consider the function space L2(−∞ , ∞).
“Any eigenfunction of the Fourier transform operator is also an eigenfunc-
tion of the parity operator, but the converse is not necessarily true.”
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2. Fill in the blanks in the following.

(a) The real part of an entire function f(z) is given by u(x, y) = (cosh x) (cos y).
Hence the function is f(z) = · · · .

(b) coth z is a periodic function of z, with a period equal to · · · .

(c) The singularity of the polynomial p(z) = zn+a1 z
n−1+ · · ·+an at z = ∞ is

· · · . (Select one from the following: (i) a removable singularity (ii) a simple
pole (iii) a pole of order n (iv) an essential singularity.)

(d) The residue at z = ∞ of the polynomial p(z) = zn + a1 z
n−1 + · · · + an is

Res
z=∞

p(z) = · · · .

(e) Let C denote the circle |z| = 2 traversed once in the positive sense. Then∮
C
dz/(z4 − 1) = · · · .

(f) Let a and b be two different complex numbers, each with nonzero real and
imaginary parts. The radius of convergence of the power series

f(z) =
∞∑
n=0

Γ(n+ a)

Γ(a)

Γ(b)

Γ(n + b)

zn

n!

is R = · · · .

(g) Given that
∞∑
n=1

1/n4 = π4/90, it follows that
∞∑
n=0

1/(2n+ 1)4 = · · · .

(h) Given that
∫∞
0
dx (sin kx)/x = 1

2
π (where k > 0), the value of the integral∫∞

0
dx (1− cos x)/x2 = · · · . (Hint: Integrate k over a suitable range.)

(i) The numerical value of the product

Γ
(− 5

4

)
Γ
(− 3

4

)
Γ
(− 1

4

)
Γ
(
1
4

)
Γ
(
3
4

)
Γ
(
5
4

)
Γ
(
7
4

)
Γ
(
9
4

)
= · · · .

(j) The value of the integral
∫ 1

0
dt t−1/2 (1− t)−1/2 = · · · .

(k) Let an arbitrary initial point z(0) in the complex plane be mapped to the
point z(n) under n iterations of the Möbius transfomation

z �→ (2z +
√
3 )/(

√
3 z + 2).
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As n→ ∞, z(n) → · · · for all z(0), with one exception.

(l) Previous question continued: The exceptional point that does not tend to
the limit point above is z = · · · .

(m) Under the Möbius transformation z �→ w = (2z + 3)/(z + 2), the circle
|z + 2| = 1 is mapped to the circle · · · .

(n) The function f(z) =
√
z ln [(z − 1)/(z + 1)] has branch points at z = · · · .

(o) Let α and β be arbitrary complex numbers. The function

f(z) = (z2 − 1)α/(z2 + 1)β

has branch points at z = · · · .

(p) The residue of f(z) = exp (z + z−1) at z = 0 is · · · . (Express your answer
in terms of a modified Bessel function.)

(q) Given that the Laplace transform of sin t is 1/(s2 + 1), it follows that the
Laplace transform of sinh t is · · · .

(r) The generating function for the Hermite polynomial Hn(z) is

e2tz−t
2

=
∞∑
n=0

Hn(z)
tn

n!
.

It follows that the Rodrigues formula for Hn(z) is Hn(z) = · · · .

(s) Let

f(x) =

{
1, |x| ≤ 1

0 |x| > 1.

If f̃(k) denotes the Fourier transform of f(x), the value of the integral∫∞
−∞dk |f̃(k)|2 = · · · .

(t) Consider a random walk on an infinite linear lattice whose sites are labelled
by the integers. The walker jumps from any site j to j−1 with a probability
per unit time given by λq, and from j to j + 1 with a probability per unit
time given by λp; further, the walker stays at the site j with probability
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per unit time given by λr. Here p, q and r are positive constants satisfying
p + q + r = 1, and λ is a positive constant with the physical dimensions of
(time)−1. Let P (j, t) be the probability that the walker is at the site j at
time t. The differential equation satisfied by P (j, t) is dP (j, t)/dt = · · · .
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Quiz 1: Solutions

1. True or false:

(a) T

(b) T

(c) T

(d) F

(e) F

(f) F

(g) F

(h) T

(i) T

(j) F

(k) T

(l) T

(m) F

(n) T

(o) T

(p) T

(q) T

(r) T

(s) F

(t) T

2. Fill in the blanks:

(a) f(z) = cosh z

(b) iπ

(c) a pole of order n

(d) 0

(e) 0

(f) ∞
(g) π4/96
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(h) 1
2
π

(i) 4π4

(j) π

(k) 1

(l) −1

(m) |w − 2| = 1

(n) −1, 0, 1 and ∞
(o) 1, i,−1,−i and ∞
(p) I1(2)

(q) 1/(s2 − 1)

(r) Hn(z) =
[ dn
dtn

e2tz−t
2
]
t=0

, which simplifies to Hn(z) = (−1)n ez
2 dn

dzn
e−z

2
.

(s) 4π

(t)
dP (j, t)

dt
= λ

[
p P (j − 1, t) + q P (j + 1, t)− (p+ q) P (j, t)

]
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QUIZ 2

1. Are the statements in quotation marks true or false?

(a) “The function sin (1/z) does not have a Taylor series expansion in the neigh-
borhood of z = 0.”

(b) A function f(z) is defined by the power series
∞∑
n=0

z2n+1/[n! (n + 1)!] about

the origin.

“f(z) is an entire function of z.”

(c) “The only singularity of 1/Γ(z) is a simple pole at z = 0.”

(d) “The Mittag-Leffler expansion of the gamma function is given by Γ(z) =
∞∑
n=0

(−1)n/[(z + n)n!].”

(e) Let f(z) = z + z3 + z9 + z27 + · · · ad infinitum, for |z| < 1.

“f(z) cannot be analytically continued outside the unit circle.”

(f) “The power series
∞∑
n=1

(ln n) zn/n converges at all points on its circle of con-

vergence.”

(g) “The function f(z) = 1/(ez − 1) is a meromorphic function of z.”

(h) “Dispersion relations for the real and imaginary parts of a generalized sus-
ceptibility χ(ω) can be derived only if the corresponding response function
φ(t) decays to zero faster than any negative power of t, as t→ ∞.”

(i) “The derivative of the gamma function, Γ ′(z), has zero residue at each of
its poles.”

(j) “The Legendre function of the second kind, Qν(z), has branch points in the
z-plane even when ν is a positive integer.”

(k) “The Laplace transform of the function f(t) = cosh πt has no singularities
in the region Re s > π.”
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(l) Bessel’s differential equation is
[
z2

d2

dz2
+ z

d

dz
+ (z2 − ν2)

]
f(z) = 0, where

ν is a parameter.

“If φν(z) is any solution of this equation, then φ−ν(z) must be equal to
φν(z), apart from a possible multiplicative constant.”

(m) “The group Möb (2,C) of Möbius transformations of the complex plane has
continuous subgroups, but no discrete subgroups.”

(n) “The group Möb (2,C) of Möbius transformations of the complex plane is
isomorphic to the group SO(3, 1) of homogeneous proper Lorentz transform-
stions in (3 + 1)-dimensional spacetime.”

(o) “The Riemann surface of the function f(z) = z1/2 (z− 1)−1/3 has 6 sheets.”

(p) “It is possible to find a contour integral representation of the beta function
B(z, w) that is valid for all complex values of both z and w.”

(q) “The Riemann zeta function ζ(z) cannot be continued analytically to the
left of the line Re z = 1

2
, because it has an infinite number of zeroes on that

line.”

(r) “The Fourier transform operator in L2(−∞ , ∞) has a finite number of
eigenvalues, each of which is infinitely degenerate.”

(s) Let G(x, x ′) denote the Green function of the differential operator d2/dx2

where x ∈ [−1, 1].

“As a function of x, G is continuous at x = x ′, but its derivative ∂G/∂x
has a finite discontinuity at x = x ′.”

(t) “The fundamental Green function of the Laplacian operator ∇2 in four-
dimensional Euclidean space is G(r, r ′) = −1/[4π2(r− r ′)2].”

(u) Consider the diffusion equation in d-dimensional space, ∂f/∂t = D∇2f
with boundary condition f(r, t) → 0 as r → ∞ and initial condition
f(r, 0) = δ(d)(r).

“The fundamental solution to this equation is a Gaussian in each Cartesian
component of r, for all positive integer values of the dimension d.”
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(v) The scattering amplitude for the scattering of a nonrelativistic particle of
mass m in a central potential λV (r) is given by

f(k, θ) = − mλ

2π�2

∫
d3r e−ik

′· r V (r)ψ(r),

where k ′ is the scattered wave vector.

“This formula is valid only if the potential V (r) decays to zero as r → ∞
more rapidly than any inverse power of r.”

(w) Continuation: “In the Born approximation, the scattering amplitude in the
forward direction (θ = 0) vanishes identically.”

(x) Continuation: “In the Born approximation, the imaginary part of the scat-
tering amplitude vanishes identically.”

(y) Consider the Helmholtz operator ∇2 + k2 in three-dimensional space.

“The fundamental Green function of this operator, corresponding to outgo-
ing spherical waves, is G(r− r ′) = −eik·(r−r ′)/

(
4π|r− r ′|).”

(z) Consider the wave operator (1/c2) ∂2/∂t2−∇2 in (d+1)-dimensional space-
time, where c is the speed of light in a vacuum. Let G(d)(R, τ) denote the
causal retarded Green function of the operator.

“G(d)(R, τ) vanishes identically when (cτ,R) is a time-like four-vector.”

(α) Continuation: “G(d)(R, τ) is singular when (cτ,R) is a light-like four-vector.”

(β) Let J = (Ji , J2 , J3) be the generators of rotations in three-dimensional
space, satisfying the Lie algebra [Jj , Jk] = iεjkl Jl .

“The lowest-dimensional, non-trivial, unitary representation of the genera-
tors is in terms of (2× 2) matrices with complex elements.”

(γ) “The parameter space of the group SU(n) is doubly connected.”

(δ) “The first homotopy group of the parameter space of the special orthogonal
group SO(n), for every n ≥ 3, is Z2 .”
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2. Fill in the blanks in the following.

(a) Given that the imaginary part of an entire function f(z) is

v(x, y) = e(x
2−y2) sin (2xy),

the function is f(z) = · · · .
(b) The meridian of longitude ϕ on the Riemann sphere is mapped into a

straight line in the complex plane. The equation of this straight line is
y = mx+ c, where m = · · · and c = · · · .

(c) The region of absolute convergence in the complex z-plane of the power

series
∞∑
n=0

[
(n + 1)/(n2 + 1)

]
(1
2
z)n is · · · .

(d) The residue at infinity of the function f(z) = (z − z−1)3 is Res
z=∞

f(z) = · · · .
(e) Let [z1, z2 ; z3, z4] denote the cross-ratio of the four points z1, z2, z3 and z4

in the complex plane. Then [z1, z2 ; z3, z4] + [z1, z3 ; z2, z4] = · · · .
(f) The Möbius transformation z �→ w such that three given points z1, z2, z3 are

mapped respectively into three other given points w1, w2, w3 is expressed by
a relation between w and z that reads · · · .

(g) Under the Möbius transformation z �→ w = (z+1)/(z+2), an infinitesimal
area element δA centered at the point z = −3/2 is mapped to an element
of area λ δA, where the value of λ is · · · .

(h) The Bernoulli numbers Bn are defined via the expansion z/(ez − 1) =
∞∑
n=0

Bn z
n/n!. Therefore Bn is given by the contour integral Bn = · · · . (You

must specify both the integrand and the contour.)

(i) The Chebyshev polynomial of the second kind, Un(cos θ), has the generating
function

1

1− 2t cos θ + t2
=

∞∑
n=0

Un(cos θ) t
n,

where θ ∈ [0, π]. Therefore Un(cos θ) can be expressed as a contour inte-
gral in the t-plane given by Un(cos θ) = · · · . (You must specify both the
integrand and the contour.)

(j) Continuation: Evaluating the contour integral and simplifying the result,
the final expression for Un(cos θ) is Un(cos θ) = · · · . (You must express
your answer in terms of trigonometric functions of θ.)

(k) Continuation: Hence the polynomial U1(cos θ) reduces to U1(cos θ) = · · · .
(l) The function f(z) = (z2 + 2)1/3 has branch points at z = · · · .

11



(m) Express your answer in terms of a Bessel function:
The residue of f(z) = exp (z − z−1) at z = 0 is Res

z=0
f(z) = · · · .

(n) The inverse Laplace transform of f̃(s) = 1/(s2 − 2s+ 1) is f(t) = · · · .
(o) Let λ be a positive constant. The Laplace transform of the function

f(t) =

∫ t

0

dtn

∫ tn

0

dtn−1 · · ·
∫ t2

0

dt1 e
−λ(t−t1)

is f̃(s) = · · · .
(p) Let

f(x) =

{
1− |x|, |x| ≤ 1

0, |x| > 1.

If f̃(k) denotes the Fourier transform of f(x), the value of the integral∫ ∞

−∞
dk |f̃(k)|2 = · · · .

(q) The positional probability distribution at any time t ≥ 0 of a random walker
on a square lattice with sites labelled by the integers (�,m) is given by

P (�,m, t) = e−λt (p1/q1)�/2 (p2/q2)m/2 I�
(
2λt

√
p1 q1

)
Im

(
2λt

√
p2 q2

)
,

where λ is the mean jump rate and pi, qi are directional probabilities such
that p1 + q1 + p2 + q2 = 1. The leading asymptotic behavior of P (�,m, t) at
very long times (λt
 1) is given by P (�,m, t) ∼ · · · .

(r) The diffusion equation for the positional probability density of a particle
diffusing on the x-axis in the region −∞ < x ≤ a, in the presence of a
constant force, is given by

∂p(x, t)

∂t
= −c ∂p (x, t)

∂x
+D

∂2p (x, t)

∂x2
.

Here c and D are positive constants denoting the drift velocity and diffusion
constant, respectively. p(x, t) is normalized to unity for all t ≥ 0. There is
a reflecting boundary at the point x = a. The boundary condition satisfied
by p(x, t) at x = a is then given by · · · .

(s) Continuation: As t→ ∞, p(x, t) tends to the stationary probability density
pst(x). This quantity satisfies the ordinary differential equation · · · .

(t) Continuation: The normalized solution for pst(x) is pst(x) = · · · .
(u) A quantum mechanical particle of mass m moving in one dimension has

the Hamiltonian H = p2/(2m), where p is the momentum operator of the
particle. Its momentum-space wave function at t = 0 is given to be φ(p).
Therefore its momentum-space wave function at any time t ≥ 0 is given by
ψ(p, t) = · · · .

12



(v) The scattering amplitude for a nonrelativistic particle of massm in a central
potential λV (r) is given, in the Born approximation, by

fB(k, θ) = − 2mλ

�2Q

∫ ∞

0

dr r sin (Qr) V (r),

where Q is the magnitude of the momentum transfer vector Q. The forward
scattering amplitude in the Born approximation is therefore given by the
expression fB(k, 0) = · · · .

(w) Continuation: The backward scattering amplitude in the Born approxima-
tion is therefore given by the expression fB(k, π) = · · · .

(x) Let R = r − r ′ and τ = t − t ′, as usual. Let G(d)(R, τ) denote the fun-
damental Green function of the Klein-Gordon operator � + µ2, where µ is
a positive constant and � = (1/c2)(∂2/∂t2) − ∇2, in (d + 1)-dimensional
spacetime. Then G(d)(R, τ) can be expressed in the form

G(d)(R, τ) =
1

(2π)d

∫
ddk φ(k,R, τ),

where φ(k,R, τ) = · · · .
(y) Let J = (J1 , J2 , J3) denote the generators of rotations in three-dimensional

space, and let ψ be an arbitrary angle. The quantity e−iJ1 ψ J2 eiJ1 ψ, ex-
pressed as a linear combination of the generators, is · · · .

(z) Continuation: Let n = (n1 , n2 , n3) be an arbitrary unit vector. Then the
commutator [J · n , J2] = .

(α) The number of generators of the orthogonal group O(n) and the special
orthogonal group SO(n) are, respectively, · · · and · · · .

(β) The number of generators of the unitary group U(n) and the special unitary
group SU(n) are, respectively, · · · and · · · .

(γ) Let x and p denote the position and momentum operators of a quantum
mechanical particle moving in one dimension, so that their commutator
[x , p] = i�I, where I is the unit operator. Let a be a real constant with
the physical dimensions of length. Using Hadamard’s Lemma, the operator
eiap/� x e−iap/� simplifies to

eiap/� x e−iap/� = · · · .

(δ) Continuation: Let b be a real constant with the physical dimensions of
linear momentum. Once again, using Hadamard’s Lemma, the operator
e−ibx/� p eibx/� simplifies to

e−ibx/� p eibx/� = · · · .
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Quiz 2: Solutions

1. True or false:

(a) T

(b) T

(c) F

(d) F

(e) T

(f) F

(g) T

(h) F

(i) T

(j) T

(k) T

(l) F

(m) F

(n) T

(o) T

(p) T

(q) F

(r) T

(s) T

(t) T

(u) T

(v) F

(w) F

(x) T

(y) F

(z) F

(α) T

(β) T

(γ) F
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(δ) T

2. Fill in the blanks:

(a) f(z) = ez
2
.

(b) m = tan ϕ and c = 0.

(c) |z| < 2.

(d) Res
z=∞

f(z) = −3.

(e) 1.

(f)
(w − w2)(w1 − w3)

(w − w3)(w1 − w2)
=

(z − z2)(z1 − z3)

(z − z3)(z1 − z2)
.

(g) λ = 16.

(h) Bn =
n!

2πi

∮
C

dz

zn (ez − 1)
, where C encloses the origin once in the positive

sense.

(i) Un(cos θ) =
1

2πi

∮
C

dt

tn+1 (1− 2t cos θ + t2)
, where C encloses the origin

once in the positive sense.

(j) Un(cos θ) =
sin (n+ 1)θ

sin θ
.

(k) U1(cos θ) = 2 cos θ.

(l) i
√
2, −i√2, ∞.

(m) −J1(2).
(n) t et.

(o) 1/[s(s+ λ)n].

(p) 4π/3.

(q) P (�,m, t) ∼ (p1/q1)
�/2 (p2/q2)

m/2 exp
[− λt

(
1− 2

√
p1 q1 − 2

√
p2 q2

)]
4πλt (p1 q1 p2 q2)1/4

.

(r)
[
D
∂p

∂x
− c p

]
x=a

= 0.

(s) D
d2pst(x)

dx2
− c

dpst(x)

dx
= 0.

(t) pst(x) = (c/D) ec(x+a)/D.

(u) ψ(p, t) = e−ip
2t/(2m�) φ(p).

(v) fB(k, 0) = −2mλ

�2

∫ ∞

0

dr r2 V (r).

(w) fB(k, π) = −mλ

�2 k

∫ ∞

0

dr r V (r) sin (2kr).
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(x) φ(k,R, τ) = c θ(τ)
sin cτk

k
eik·R.

(y) J2 cos ψ + J3 sin ψ.

(z) 0.

(α) 1
2
n(n− 1) and 1

2
n(n− 1).

(β) n2 and n2 − 1.

(γ) x + a. This result tells us why the momentum operator p is the generator
of translations in position space.

(δ) p + b. This result tells us why the position operator x is the generator of
translations in momentum space.
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