Department of Physics
 Indian Institute of technology Madras
 Select/Special Topics in Classical Mechanics
 Self-Assessment-2 (Questions \& Answers)

NOTE: Symbols/notations used in this question paper have their usual meanings, as used in our course.
() SOLUTIONS ()

1. State whether the following statements are 'TRUE' or 'FALSE' and give reason. The reason should be short, but as rigorous as you can provide.
a. For a particle of mass m moves in a region of space where the potential is described by $U(x, y)=-U_{0} \exp \left[-\frac{\left(x^{2}+y^{2}\right)}{2 L^{2}}\right]$, the point $(x=0, y=0)$ is a 'saddle point' (given: $U_{0} \& L$ are positive constants).

Solution: False

$$
\begin{aligned}
& \frac{d^{2} U}{d x^{2}}=\frac{U_{0}}{L^{2}} \quad \text { at } \quad \text { point }(x, y)=(0,0) \\
& \frac{d^{2} U}{d y^{2}}=\frac{U_{0}}{L^{2}} \quad \text { at point }(x, y)=(0,0)
\end{aligned}
$$

Since double derivative of the function with respect to the two variable is positive, the point at $(\mathbf{x}, \mathrm{y})=(0,0)$ is not a saddle point; it is a point of 'stable equilibrium' .
b. If a vector field \vec{A} is both irrotational $(\vec{\nabla} \times \vec{A}=\overrightarrow{0})$ and solenoidal $(\vec{\nabla} \cdot \vec{A}=0)$, then it must be identically equal to the null vector.

Solution: False
For any constant vector field \vec{A}, for example, $(\vec{\nabla} \times \vec{A}=\overrightarrow{0})$ and $(\vec{\nabla} \cdot \vec{A}=0)$
2. A position-dependent force field is given by the expression $\vec{F}=A(x-y) \hat{e}_{x}+(x+y) \hat{e}_{y}$. It is given that $|A|=+1$.
(a) What is/are the dimension(s) of A?

Solution:
Dimension of A must be $\frac{[\vec{F}]}{L}=M T^{-2}$
(b) The given force acts on a particle, moving it along a closed path described by the two curves:
$y=x^{2}$, traversed from $(0,0)$ to $(1,1)$,
and

$y^{2}=x$ traversed from $(1,1)$ to $(0,0)$.
(c) Determine the work $\oint \overrightarrow{\mathrm{F}} \cdot \overrightarrow{\mathrm{dl}}$ done by the above force over the closed path described above.

Solution:

$$
\begin{aligned}
& \vec{F}=A(x-y) \hat{e}_{x}+(x+y) \hat{e}_{y} \text { with }|\mathrm{A}|=1 \\
& \oint_{C} \vec{F} \cdot \overrightarrow{d l}=\int_{\text {Along }} \vec{F} \cdot \overrightarrow{C_{1}} \\
& \int_{\text {Along }} \overrightarrow{C_{1}} \vec{F} \cdot \overrightarrow{d l}=\int_{0}^{1}\left(x-x^{2}\right) d x+\left(x+x^{2}\right) 2 x d x=\frac{4}{3} \\
& \int_{\mathrm{A}_{2}} \vec{F} \vec{F} \cdot \overrightarrow{d l}=\int_{1}^{01}\left(y^{2}-y\right) 2 y d y+\left(y^{2}+y\right) d y=-\frac{2}{3} \\
& \therefore \oint_{C} \vec{F} \cdot \overrightarrow{d l}=\int_{\text {Along }} \overrightarrow{\mathrm{C}_{1}} \overrightarrow{\mathrm{C}_{2}} \cdot \overrightarrow{d l}+\int_{\text {Along }} \overrightarrow{\mathrm{C}_{2}} \vec{\bullet} \cdot \overrightarrow{d l}=\frac{2}{3}
\end{aligned}
$$

(d) Without determining the curl of this force (i.e. without finding $\vec{\nabla} \times \vec{F}$), can you tell if the force is irrotational or not? Explain how!

Solution:
The Stokes' theorem states that $\oint \vec{F} \cdot \overrightarrow{d l}=\iint(\vec{\nabla} \times \vec{F}) \bullet \overrightarrow{d s}$. In the present case, since $\oint \vec{F} \bullet \overrightarrow{d l}$ is nonzero, $\vec{\nabla} \times \vec{F}$ must also be nonzero, which implies that \vec{F} is not irrotational.
3. A scalar field $\psi(\mathrm{x}, \mathrm{y})$ is given by the expression $\psi(\mathrm{x}, \mathrm{y})=\psi_{0} \exp \left(x^{2}+y^{2}-4 x-8 y\right)$,
where ψ_{0} is a constant having suitable dimensions.
(a) Obtain the equipotential curve for $\psi=\psi_{0}$. Solution:

$$
\begin{aligned}
& \psi(x, y)=\psi_{0} \exp \left(x^{2}+y^{2}-4 x-8 y\right) \\
& \ln \frac{\psi}{\psi_{0}}=x^{2}+y^{2}-4 x-8 y
\end{aligned}
$$

Add 20 to both sides,

$$
\begin{aligned}
\ln \frac{\psi}{\psi_{0}}+20 & =x^{2}+y^{2}-4 x-8 y+20 \\
& =(x-2)^{2}+(y-4)^{2}
\end{aligned}
$$

For constant value of $\psi=\psi_{0}$, the equipotential curve is a circle with centre at $(x, y)=(2,4)$ and radius $\sqrt{20} \approx 4.47 \ldots$.
b) Sketch the vector field $\vec{\nabla} \psi$ at $\psi=\psi_{0}$.

Solution: $\vec{\nabla} \psi$ is perpendicular to equipotential curves, as shown. Note that as $\psi \geq \psi_{0}$, the radius of the equipotential circle would be $\geq \sqrt{20}$, so the gradient would be pointed OUTWARD.
(a) Determine the divergence of the vector point function described by:

$$
\overrightarrow{\mathrm{A}}(\hat{\mathrm{r}})=(\mathrm{r} \cos \theta) \hat{e}_{r}+(\mathrm{r} \sin \theta) \hat{e}_{\theta}+(\mathrm{r} \sin \theta \cos \varphi) \hat{e}_{\phi}
$$

Solution:

$$
\begin{aligned}
\vec{\nabla} \bullet \vec{A} & =\left\{\hat{e}_{r} \frac{\partial}{\partial r}+\hat{e}_{\theta} \frac{1}{r} \frac{\partial}{\partial \theta}+\hat{e}_{\phi} \frac{1}{r \sin \theta} \frac{\partial}{\partial \phi}\right\} \cdot\left\{(\mathrm{r} \cos \theta) \hat{e}_{r}+(\mathrm{r} \sin \theta) \hat{e}_{\theta}+(\mathrm{r} \sin \theta \cos \theta) \varphi \hat{e}_{\phi}\right\} \\
& =\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} r \cos \theta\right)+\frac{1}{r \sin \theta} \frac{\partial}{\partial \theta}(\sin \theta r \sin \theta)+\frac{1}{r \sin \theta} \frac{\partial}{\partial \varphi}(r \sin \theta \cos \varphi) \\
& =3 \cos \theta+2 \cos \theta+(-\sin \phi)=5 \cos \theta-\sin \phi
\end{aligned}
$$

(b) Find the flux of the above vector field over a closed surface that encloses a hemisphere of radius R resting on the $x y$-plane, with its center at origin and located in the region $z \geq 0$.
Solution: Net flux $=\oiint \vec{A} \bullet \overrightarrow{d s}=\iint_{\substack{\text { upper } \\ \text { henisphere }}} \vec{A} \bullet \overrightarrow{d s}+\underset{\substack{\text { circular } \\ \text { xy plane } \\ \text { at } \\ \theta=\frac{\pi}{2}}}{ } \vec{A} \bullet \overrightarrow{d s}$

$$
\begin{aligned}
& \begin{aligned}
& \overrightarrow{\mathrm{A}}=(\mathrm{r} \cos \theta) \hat{e}_{r}+(\mathrm{r} \sin \theta) \hat{e}_{\theta}+(\mathrm{r} \sin \theta \cos \varphi) \hat{e}_{\phi} \\
& \overrightarrow{\mathrm{A}} \bullet \hat{\mathrm{e}}_{z}=(\mathrm{r} \cos \theta)\left(\hat{e}_{r} \bullet \hat{\mathrm{e}}_{z}\right)+(\mathrm{r} \sin \theta)\left(\hat{e}_{\theta} \bullet \hat{\mathrm{e}}_{z}\right)+ \oiint \vec{A} \bullet \overrightarrow{d s}=\iint_{\substack{\text { upper } \\
\text { hemisphere }}} \vec{A} \bullet \overrightarrow{d s}+\iint_{\substack{\text { circular } \\
\text { xy lane } \\
\text { at } \theta=\frac{\pi}{2}}} \vec{A} \bullet \overrightarrow{d s}
\end{aligned} \\
& (\mathrm{r} \sin \theta \cos \varphi)\left(\hat{e}_{\phi} \cdot \hat{\mathrm{e}}_{z}\right) \\
& \hat{e}_{r}=\sin \theta \cos \varphi \hat{\mathrm{e}}_{x}+\sin \theta \sin \varphi \hat{\mathrm{e}}_{y}+\cos \theta \hat{\mathrm{e}}_{z} \\
& \hat{e}_{\theta}=\cos \theta \cos \varphi \hat{\mathrm{e}}_{x}+\cos \theta \sin \varphi \hat{\mathrm{e}}_{y}-\sin \theta \hat{\mathrm{e}}_{z} \\
& \hat{e}_{\varphi}=-\sin \varphi \hat{\mathrm{e}}_{x}+\cos \varphi \hat{\mathrm{e}}_{y} \\
& \overrightarrow{\mathrm{~A}} \cdot \hat{\mathrm{e}}_{z}=(\mathrm{r} \cos \theta)(\cos \theta)+(\mathrm{r} \sin \theta)(-\sin \theta) \\
& =r\left(\cos ^{2} \theta-\sin ^{2} \theta\right)=-r \text { at } \theta=\frac{\pi}{2}(\text { xy plane }) \\
& =\int_{\theta=0}^{\theta=\frac{\pi}{2}} \int_{\varphi=0}^{2 \pi}\left(\vec{A} \cdot \hat{e}_{r}\right)\left(r^{2} \sin \theta d \theta d \phi\right)+\int_{r=0}^{R} \int_{\varphi=0}^{2 \pi} \vec{A} \cdot(r d \varphi d r)\left(-\hat{e}_{z}\right) \\
& =\int_{\theta=0}^{\theta=\frac{\pi}{2}} \int_{\varphi=0}^{2 \pi}(r \cos \theta)\left(r^{2} \sin \theta d \theta d \phi\right)+\int_{r=0}^{R} \int_{\varphi=0}^{2 \pi}(r)(r d \varphi d r) \\
& =\pi R^{3}+\frac{2 \pi}{3} R^{3} \\
& =\frac{5 \pi}{3} R^{3}
\end{aligned}
$$

5 A planet in a remote galaxy rotates rapidly about its own axis. It completes one full rotation in one second. Sketch $T(\lambda) v s \lambda$ for this planet, where $T(\lambda)$ is the time period for the rotation of a Foucault pendulum set in motion on this planet, λ is the latitude; $-\frac{\pi}{2} \leq \lambda \leq \frac{\pi}{2}$. Solution: $T(\lambda)=\frac{1}{\sin \lambda}$.

[^0]
[^0]: Lattitude $\lambda(\theta)$

