NPTEL COURSE TOPICS IN NONLINEAR DYNAMICS
 V. Balakrishnan
 Department of Physics, Indian Institute of Technology Madras
 Chennai 600 036, India

Quiz 2

1. Are the statements in quotation marks true or false?
(a) "Any map of the unit interval that is non-invertible leads to dynamics that is chaotic."
(b) "The Lyapunov exponent of the logistic map $x_{n+1}=\mu x_{n}\left(1-x_{n}\right)$ at $\mu=\mu_{\infty} \simeq 3.566 \ldots$, where μ_{∞} is the limit point of the period-doubling cascade of bifurcations, is equal to $\ln 2$."
(c) "For any chaotic attractor, the generalized dimension D_{0} is equal to the dimensionality of the phase space itself."
(d) "If the Lyapunov exponent of a one-dimensional map is positive, we may conclude that the dynamics is chaotic for all initial conditions."
(e) "Stability analysis using a Lyapunov function enables us to decide on the stability of a critical point even in cases where linearization in the vicinity of the critical point is invalid."
(f) "The logistic map $x_{n+1}=\mu x_{n}\left(1-x_{n}\right)$ undergoes a Hopf bifurcation at $\mu=3$."
(g) "A Hopf bifurcation cannot occur in a Hamiltonian system."
(h) "The origin $x=0, y=0$ is a global attractor for the dynamical system $\dot{x}=y, \quad \dot{y}=x-x^{3}-y$."
(i) "The winding number of the singularity at the origin of the planar vector field

$$
\mathbf{f}(x, y)=\left(\frac{x^{2}-y^{2}}{\left(x^{2}+y^{2}\right)^{2}}, \frac{-2 x y}{\left(x^{2}+y^{2}\right)^{2}}\right)
$$

is equal to -2 ."
(j) "The damped, unforced Duffing oscillator cannot have any limit cycles."
(k) Consider the map $x_{n+1}=x_{n}\left(3-4 x_{n}^{2}\right)$, where $x_{0} \in[-1,1]$.
"This map has a stable period-3 cycle."
(l) Let $x(t)$ be a dichotomous Markov process, in which x jumps randomly between two values x_{1} and x_{2}, with mean residence times τ_{1} and τ_{2} in the two states. Further, let the mean value of $x(t)$ be zero.
"The autocorrelation function $\langle x(0) x(t)\rangle$ of the process is a decaying exponential function of t. "
2. Let $S \in[0,1]$ be the set of numbers such that the decimal expansion of any $x \in S$ is of the form $x=0 . a_{1} a_{2} a_{3} \ldots$, where each digit is even. (In other words, the digits can only have the values $0,2,4,6$ and 8.) Find the box-counting (or fractal) dimension D_{0} of the set S.
3. Three identical tall glasses A, B and C contain water to respective heights x_{0}, y_{0} and z_{0}. The levels in A and B are first equalised by pouring water from the glass containing more water to the one containing less water. The levels in B and C are then similarly equalised. Finally, the levels in C and A are equalised by the same procedure.

The entire procedure is iterated over and over again. What are the levels in the three glasses after n iterations of this process?

