Department of Physics IIT-Madras

PCD_STiAP_Self_Assesment_5
20 marks

1. What are the parameters that can be measured in atomic photoionization process? Explain them briefly.
a. Cross sections: The probability measure of a transition to take place during the process
b. Angular distribution of photoelectrons: The direction in which the photoelectrons are ejected out with reference to the incident beam and polarization direction.
c. Spin-polarization parameters of the photoelectrons: Gives the orientation of the angular momentum of the photoelectrons.
2. Consider a system of 20 electrons. Write down the relativistic configuration of the system and give the dipole transition from the valence subshell.

- 2marks

The relativistic Configuration:

$$
1 s_{1 / 2}^{2} 2 s_{1 / 2}^{2} 2 p_{1 / 2}^{2} 2 p_{3 / 2}^{4} 3 s_{1 / 2}^{2} 3 p_{1 / 2}^{2} 3 p_{3 / 2}^{4} 4 s_{1 / 2}^{2}
$$

The allowed dipole transition from 4 s subshell is:

$$
\begin{aligned}
& 4 s_{1 / 2} \rightarrow \varepsilon p_{1 / 2} \\
& 4 s_{1 / 2} \rightarrow \varepsilon p_{3 / 2}
\end{aligned}
$$

3. Determine the number of states within the solid angle $d \Omega$ in a cubical box of volume V and length L, with energy between E and $E+d E$.

The number of states in volume element is

$$
\begin{array}{rlr}
n^{2} d n d \Omega & =n^{2} \frac{d n}{d E} d E d \Omega & n=\frac{L}{2 \pi} k \Rightarrow d n=\frac{L}{2 \pi} d k \\
& =n^{2} \frac{d k}{d E} \frac{L}{2 \pi} d E d \Omega & \text { [mul and div by L/2П] } \\
& =n^{2} \frac{d k}{d E}\left(\frac{L}{2 \pi}\right)^{2} \frac{2 \pi}{L} d E d \Omega & E=\frac{\hbar^{2} k^{2}}{2 m} \\
& =\left(\frac{L}{2 \pi} k\right)^{2}\left(\frac{m}{\hbar^{2}} \frac{1}{k}\right)\left(\frac{L}{2 \pi}\right)^{2} \frac{m}{\hbar^{2} k} \\
& =\left(\frac{L}{2 \pi}\right)^{3} \frac{m k}{\hbar^{2}} d E d \Omega &
\end{array}
$$

Number of states within the solid angle $d \Omega$ in a cubical box with energy between E and $\mathrm{E}+\mathrm{dE}$ is given by:
$\rho(E) d \Omega=\left(\frac{1}{2 \pi}\right)^{3} \frac{m k}{\hbar^{2}} V$; Where $\mathrm{L}^{3}=\mathrm{V}$
4. a. What is Born approximation. Show that $\frac{v_{f}}{2 c} \lll 1$.

Born approximation is a high energy approximation. The incident photon energy is very high compared to the $\left|E_{1 s}\right|$ i.e $\hbar \omega \gg\left|E_{1 s}\right|$. So we have
$\hbar \omega=\frac{\hbar^{2} k_{f}^{2}}{2 m}+I . P \approx \frac{\hbar^{2} k_{f}^{2}}{2 m} \quad E=\hbar \omega=\hbar k c$
$k c=\frac{\hbar k_{f}^{2}}{2 m} \Rightarrow \frac{k}{k_{f}}=\frac{\hbar k_{f}}{2 m c}=\frac{p_{f}}{2 m c}=\frac{v_{f}}{2 c}$
$\frac{v_{f}}{2 c} \lll 1$
b. Under Born approximation in what powers of energy and atomic number do the photoionization cross section depends on?
$\sigma \rightarrow E^{-7 / 2}, Z^{5}$
5. Given the matrix element $\langle\mathrm{f}| \mathrm{e}^{\mathrm{i} \overrightarrow{\mathrm{k}} \cdot \overrightarrow{\mathrm{F}}} \hat{\varepsilon} \bullet \vec{\nabla}|\mathrm{i}\rangle$ where $|i\rangle$ represents initial bound state and $|f\rangle$ represents final continuum state, under dipole approximation, determine the momentum and length form of the matrix elements.

$$
\begin{aligned}
& \langle f| e^{i \vec{k} \cdot \vec{r}} \hat{\varepsilon} \cdot \vec{\nabla}|i\rangle=\frac{1}{(-i \hbar)}\langle f| e^{i \vec{k} \cdot \vec{r}} \hat{\varepsilon} \cdot(-i \hbar \vec{\nabla})|i\rangle \\
& =\frac{\mathrm{i}}{\hbar}\langle\mathrm{f}| \mathrm{e}^{\mathrm{i} \overrightarrow{\mathrm{k}} \cdot \mathbf{\mathrm { r }}} \hat{\varepsilon} \bullet \overrightarrow{\mathrm{p}}|\mathrm{i}\rangle \quad ; \text { In dipole approximation } e^{+i(\vec{k} \cdot \vec{r})} \approx 1 \\
& \langle f| e^{i \vec{k} \cdot \vec{r}} \hat{\varepsilon} \cdot \vec{\nabla}|i\rangle=\frac{i}{\hbar}\langle f| p_{x}|i\rangle \\
& {\left[r_{k}, p_{k}^{2}\right]=r_{k} r_{k} p_{k}-p_{k} p_{k} r_{k}} \\
& =r_{k} p_{k} p_{k}-p_{k} r_{k} p_{k} \underbrace{+p_{k} r_{k} p_{k}-p_{k} p_{k} r_{k}} \\
& =\left[r_{k}, p_{k}\right] p_{k}+p_{k}\left[r_{k}, p_{k}\right] \\
& =2 i \hbar p_{k} \\
& {\left[r_{k}, H_{0}\right]=\left[r_{k}, \frac{p^{2}}{2 m}\right]=\frac{i \hbar}{m} p_{k}}
\end{aligned}
$$

$$
\begin{aligned}
& \langle f| e^{i \vec{k} \cdot \vec{r}} \hat{\varepsilon} \cdot \vec{\nabla}|i\rangle=\frac{i}{\hbar}\langle f| \frac{m}{i \hbar}\left[x, H_{0}\right]|i\rangle \\
& \langle f| e^{i \vec{k} \cdot \vec{r}} \hat{\varepsilon} \cdot \vec{\nabla}|i\rangle=\frac{i}{\hbar}\langle f| \frac{m}{i \hbar}\left[x H_{0}-H_{0} x\right]|i\rangle \\
& \langle f| e^{i \vec{k} \cdot \vec{r}} \hat{\varepsilon} \cdot \vec{\nabla}|i\rangle=\frac{m}{\hbar^{2}}\left(E_{i}-E_{f}\right)\langle f| x|i\rangle \\
& \langle f| p_{x}|i\rangle=\frac{i m}{\hbar}\left(E_{i}-E_{f}\right)\langle f| x|i\rangle \\
& \langle f| p_{x}|i\rangle=i m \omega_{f i}\langle f| x|i\rangle \quad \Rightarrow \overrightarrow{\mathrm{p}}_{\mathrm{fi}}=i m \omega_{\mathrm{fi}} \overrightarrow{\mathrm{r}}_{\mathrm{fi}}
\end{aligned}
$$

6. Given the differential cross section equation $\left[\frac{d \sigma}{d \Omega}\right]_{\hat{k}_{f}}^{\hat{\varepsilon}}=\frac{\sigma_{\text {Total }}}{4 \pi}\left[1+\beta P_{2} \cos \Theta\right]$ where $P_{2} \cos \Theta=\frac{1}{2}\left(3 \cos ^{2} \Theta-1\right)$. Find the range of β.

- 3 marks

Since cross section cannot go negative $1+\frac{\beta}{2}\left(3 \cos ^{2} \Theta-1\right) \geq 0$

$$
\begin{aligned}
& \frac{\beta}{2}\left(3 \cos ^{2} \Theta-1\right) \geq-1 \\
& {\left[\cos ^{2} \Theta\right]_{\max }=1 \Rightarrow \beta \geq-1} \\
& {\left[\cos ^{2} \Theta\right]_{\min }=0 \Rightarrow \beta \leq 2} \\
& \Rightarrow-1 \leq \beta \leq 2
\end{aligned}
$$

$$
0 \leq \Theta \leq \pi
$$

