Department of Physics
 IIT-Madras

PCD_STiAP_Self_Assesment_2

Q1. [a] The radial part of the Schrodinger differential equation for the Hydrogen atom is written below with an unknown ' C ':

$$
\frac{1}{r^{2}} \frac{d}{d r}\left(r^{2} \frac{d R(r)}{d r}\right)+C_{\ell}(r)+\frac{2 m}{\hbar^{2}}[E-V(r)] R(r)=0 .
$$

Find C and express your answer here: $C_{\ell}(r)=-\frac{l(l+1)}{r^{2}} R(r)$, Centrifugal term $\rightarrow 2$ marks

Q1. [b] The radial part of the Schrodinger differential equation for the Hydrogen atom, inclusive of the 'centrifugal' term $C_{\ell}(r)$ has eigenvalues E which can be written as one the two expressions given below.

Place a tick mark ${ }^{\checkmark}$ in the box corresponding to the correct expression below:

$$
\begin{aligned}
& E=E_{n} \rightarrow \text { independent of } \ell \quad \sqrt{ } \\
& E=E_{n, \ell} \rightarrow \text { depending on } \ell
\end{aligned}
$$

Q1. [c] (i) The Casimir operator for the $\mathrm{SO}(3)$ symmetry group of the Hydrogen atom is \qquad and its eigenvalues is $\hbar j(j+1)$
(ii) One of the two Casimir operators for the $\mathrm{SO}(4)$ symmetry group of the Hydrogen atom is: $c_{1}=I^{2}+K^{2}$ and its eigenvalues are: $\hbar^{2} i(i+1) ; \hbar^{2} k(k+1)$
(iii) The other Casimir operator for the $\mathrm{SO}(4)$ symmetry group of the Hydrogen atom is: $c_{2}=I^{2}-K^{2}$ and its eigenvalues are: $\hbar^{2} i(i+1) ; \hbar^{2} k(k+1)$

Q2. [a] When the angular momentum is half-integer, place a tick mark ${ }^{\checkmark}$ in the box corresponding to the correct expression below, $U_{R}(\theta)$ being the rotation operator corresponding to rotation through the angle θ :

$$
\begin{array}{ll}
U_{R}(\theta+2 \pi)=-U_{R}(\theta) & \boxed{\sqrt{2}} \\
\text { or } \\
U_{R}(\theta+2 \pi)=+U_{R}(\theta) & \square
\end{array}
$$

Write your 'proof' in the space below:
For half integer angular part $\vec{J}=\frac{1}{2} \hbar \vec{\sigma}$

$$
\begin{aligned}
& U_{R}(\theta \hat{\theta})=\mathrm{e}^{-i \frac{\theta}{2} \hat{\theta} \cdot \bar{\sigma}} \\
& U_{R}\left(\theta=2 \pi, \hat{\theta}=\hat{e}_{z}\right)=\mathrm{e}^{-i \frac{2 \pi}{2} \hat{e}_{z} \cdot \vec{\sigma}}=\mathrm{e}^{-i \pi \sigma_{z}} \\
& =\cos \left(\pi \sigma_{z}\right)-i \sin \left(\pi \sigma_{z}\right) \\
& =\cos \left(\pi\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]\right)-i \sin \left(\pi\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]\right) \\
& =\left[\begin{array}{cc}
\cos \pi & 0 \\
0 & \cos (-\pi)
\end{array}\right] \\
& =\left[\begin{array}{cc}
-1 & \\
\hline & -1
\end{array}\right]=-1\left[\begin{array}{ll}
1 & 1
\end{array}\right]
\end{aligned}
$$

$\mathrm{U}(\theta+2 \pi)=-\mathrm{U}(\theta) \quad \rightarrow 5$ marks

Q2. [b] (i) The 'orbital angular momentum selection rule' for electric dipole transition is:

$$
\Delta l=0, \pm 1
$$

(ii) The 'spin angular momentum selection rule' for electric dipole transition is:

$$
\Delta s=0
$$

(iii) The 'total angular momentum selection rule' for electric dipole transition is:

$$
\Delta j=0, \pm 1
$$

(iv) The Wigner-Eckart theorem is:

$$
\left\langle j^{\prime} m^{\prime}\right| T_{q}^{(k)}|j m\rangle=\frac{\left\langle j^{\prime}\left\|T_{q}^{(k)}\right\| j\right\rangle}{\sqrt{2 j^{\prime}+1}}\left(j^{\prime} m^{\prime}|m q\rangle \quad \rightarrow 5\right. \text { marks }
$$

Q3(a). Obtain the matrix representation for the operator $J_{-}=J_{x}-i J_{y}$ in the common eigenbasis of J^{2}, J_{z} for the case of spin-half angular momentum and write the required matrix representation in the space below: $\mathrm{j}=1 / 2 ; \mathrm{m}=1 / 2,-1 / 2 ; 2$ dimensional basis $\left\{\left\langle\frac{1}{2}, \frac{1}{2}\right\rangle,\left|\frac{1}{2},-\frac{1}{2}\right\rangle\right\}$
$\mathbb{J}_{-}=\left[\begin{array}{cc}\left\langle\frac{1}{2}, \frac{1}{2}\right| J_{-}\left|\frac{1}{2}, \frac{1}{2}\right\rangle & \left\langle\frac{1}{2}, \frac{1}{2}\right| J_{-}\left|\frac{1}{2},-\frac{1}{2}\right\rangle \\ \left\langle\frac{1}{2},-\frac{1}{2}\right| J_{-}\left|\frac{1}{2}, \frac{1}{2}\right\rangle & \left\langle\frac{1}{2},-\frac{1}{2}\right| J_{-}\left|\frac{1}{2},-\frac{1}{2}\right\rangle\end{array}\right]$.
$\mathbb{J}_{-}=\left[\begin{array}{cc}0 & 0 \\ \left\langle\frac{1}{2},-\frac{1}{2}\right| J_{-}\left|\frac{1}{2}, \frac{1}{2}\right\rangle & 0\end{array}\right]$
$\langle j, m-1| J_{-}|j m\rangle=+\hbar \sqrt{j(j+1)-m(m-1)}$
From eq (2)

$$
\begin{aligned}
& \left\langle\frac{1}{2},-\frac{1}{2}\right| J_{-}\left|\frac{1}{2}, \frac{1}{2}\right\rangle=+\hbar \sqrt{\frac{1}{2}\left(\frac{1}{2}+1\right)-\frac{1}{2}\left(\frac{1}{2}-1\right)}=+\hbar \sqrt{\frac{3}{4}+\frac{1}{4}}=\hbar \\
& \mathbb{J}_{-}=\hbar\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]
\end{aligned}
$$

Q3(b). It is given that $Y_{\ell \mathrm{m}}(\theta \varphi)=\sum_{\mathrm{m}^{\prime}=-\ell}^{\ell} D_{m m^{\prime}}^{(\ell)}{ }^{*}(R) \mathrm{Y}_{\ell \mathrm{m}^{\prime}}\left(\theta^{\prime} \varphi^{\prime}\right) \rightarrow$ we have expanded the spherical harmonic function using the Wigner D functions. Find $Y_{\ell m}(\theta \varphi)$ corresponding to a point on the Z ' axis. Give your answer in the space below:

$$
\mathrm{Y}_{\ell \mathrm{m}}(\theta \varphi)=\sum_{\mathrm{m}=-\ell}^{\ell} \mathrm{D}_{\mathrm{mm}}^{(\ell)}{ }^{(\ell)}(\mathrm{R}) \mathrm{Y}_{\ell \mathrm{m}^{\prime}}\left(\theta^{\prime} \varphi^{\prime}\right)
$$

For a point on Z 'axis $\theta=\beta ; \varphi=\alpha ; \theta^{\prime}=0$

$$
\begin{align*}
& Y_{\ell m}(\beta \alpha)=\sum_{m^{\prime}=-\ell}^{\ell} D_{m m^{\prime}}^{(\ell)}{ }^{*}(R) Y_{l m^{\prime}}\left(0 \varphi^{\prime}\right) \tag{1}\\
& \text { For every value of } l \text { and } m^{\prime} ; \quad Y_{l m^{\prime}}\left(0 \varphi^{\prime}\right)=\sqrt{\frac{2 l+1}{4 \pi}} \delta_{m^{\prime} 0} \\
& Y_{\ell m}(\beta \alpha)=D_{m 0}^{(\ell)^{*}}(R) \sqrt{\frac{2 l+1}{4 \pi}} \\
& \text { We know that, } \\
& \mathrm{Y}_{\ell \mathrm{m}}\left(\theta^{\prime} \varphi^{\prime}\right)=\sum_{\mathrm{m}^{\prime}=-\ell}^{\ell} \mathrm{D}_{\mathrm{m}^{\prime} \mathrm{m}}^{(\ell)}(\mathrm{R}) \mathrm{Y}_{\ell \mathrm{m}^{\prime}}(\theta \varphi) \\
& \text { for } m=0: \quad Y_{t 0}\left(\theta^{\prime} \varphi^{\prime}\right)=\sum_{m^{\prime}=-\ell}^{\ell} D_{m^{2} 0}^{(\ell)}(R) Y_{t m^{\prime}}(\theta \varphi) \quad \text { from eq (3) }
\end{align*}
$$

$$
Y_{\ell 0}\left(\theta^{\prime} \varphi^{\prime}\right)=\sum_{m^{\prime}=-\ell}^{\ell} \sqrt{\frac{4 \pi}{2 l+1}} \mathrm{Y}_{\mathrm{lm}}^{*}(\beta, \alpha) \mathrm{Y}_{\ell \mathrm{m}^{\prime}}(\theta \varphi)
$$

Using m instead of m^{\prime} and substituting Legendre polynomial

$$
\begin{aligned}
& \sqrt{\frac{2 \ell+1}{4 \pi}} \mathrm{P}_{\ell}\left(\cos \theta^{\prime}\right)=\sum_{\mathrm{m}=-\ell}^{\ell} \sqrt{\frac{4 \pi}{2 \ell+1}} \mathrm{Y}_{\ell \mathrm{m}}^{*}(\beta, \alpha) \mathrm{Y}_{\ell \mathrm{m}}(\theta \varphi) \\
& \mathrm{P}_{\ell}\left(\cos \theta^{\prime}\right)=\frac{4 \pi}{2 \ell+1} \sum_{\mathrm{m}=-\ell}^{\ell} \mathrm{Y}_{\ell \mathrm{m}}^{*}(\beta, \alpha) \mathrm{Y}_{\ell \mathrm{m}}(\theta \varphi)
\end{aligned}
$$

Q3(c). Is the transition $(\mathrm{j}=0) \rightarrow(\mathrm{j}=0)$ allowed as per the dipole selection rules? Explain your answer in the space below:

The transition $(\mathrm{j}=0) \longrightarrow \mathrm{j}=0)$ cannot take place under any selection rules. Since this transitions do not possess a net orbital angular momentum.
From triangular law of inequality, we have $\left|j-j^{\prime}\right| \leq 1 \leq\left|j+j^{\prime}\right|$ For $(\mathrm{j}=0) \rightarrow\left(\mathrm{j}^{\prime}=0\right)$

$$
j+j^{\prime}=0 \text {; This is not greater or equal to unity. }
$$ Therefore, the selection rule is violated.

Q4. A point mass particle whose rest-mass is m and energy E moves at a constant velocity v (with respect to an inertial frame S) in a 'zero-potential' region. Given: $\gamma=1 / \sqrt{1-\left(\mathrm{v}^{2} / \mathrm{c}^{2}\right)}$.

Place a tick mark ${ }^{\checkmark}$ in the 'appropriate True/False boxes' below:

(a) According to classical non-relativistic mechanics, $\mathrm{E}=\gamma \mathrm{mc}^{2} \square$ True $\sqrt{ }$ False

Give a brief reason justifying your answer in the little space below \& if false, rectify the statement:

$$
\begin{aligned}
E=\gamma m c^{2} & =\left(1-\frac{v^{2}}{c^{2}}\right)^{-1 / 2} m c^{2} \\
& =\left(1+\frac{1}{2} \frac{v^{2}}{c^{2}}+\frac{1}{4} \frac{v^{2}}{c^{2}}+\ldots \ldots . . .\right) m c^{2}
\end{aligned}
$$

In Classical non-relativistic mechanic, $v \ll c$

$$
\therefore E=\left(1+\frac{1}{2} \frac{v^{2}}{c^{2}}\right) m c^{2} \quad \Rightarrow E=m c^{2}+\frac{1}{2} m v^{2}
$$

(b) According to classical relativistic mechanics, the 4 -velocity is given by $\gamma \frac{\mathrm{dr}}{\mathrm{dt}} \square$ rue $\boxed{\sqrt{~ F a l s e ~}}$

Give a brief reason justifying your answer in the little space below \& if false, rectify the statement:
The four velocity is given by $\eta^{\mu}(\mu=0,1,2,3)$, where

$$
\begin{aligned}
& \eta^{0}=\gamma c ; \eta^{1}=\gamma \frac{d x^{1}}{d t} ; \eta^{2}=\gamma \frac{d x^{2}}{d t} ; \eta^{3}=\gamma \frac{d x^{3}}{d t} \\
& \eta^{\mu}=\gamma c, \gamma \frac{d \vec{r}}{d t}
\end{aligned}
$$

(c) According to relativistic mechanics, the 'momentum' is given by $\vec{p}=\gamma \overrightarrow{\mathrm{v}} \square$ True $\sqrt{ }$ False Give a brief reason justifying your answer in the little space below \& if false, rectify the statement:

Proper momentum; $p^{\mu}(\mu=0,1,2,3)$

$$
\begin{aligned}
& p^{0}=m \gamma c ; p^{1}=m \gamma \frac{d x^{1}}{d t} ; p^{2}=m \gamma \frac{d x^{2}}{d t} ; p^{3}=m \gamma \frac{d x^{3}}{d t} \\
& p^{\mu}=m \gamma c, m \gamma \vec{v}
\end{aligned}
$$

(d) According to quantum relativistic mechanics, the leading term in the relativistic correction to the kinetic energy goes as $\frac{\mathrm{v}^{2}}{\mathrm{c}^{2}} \cdot \sqrt{ }$ True \square False
Give a brief reason justifying your answer in the little space below \& if false, rectify the statement:

$$
K \cdot E=E-m c^{2}
$$

$=m c^{2}\left(1-\frac{v^{2}}{c^{2}}\right)^{-1 / 2}-m c^{2}$
$=m c^{2}\left(1+\frac{1}{2} \frac{v^{2}}{c^{2}}+\frac{1}{4} \frac{v^{2}}{c^{2}}+\ldots \ldots . ..\right)-m c^{2}$
$=m c^{2}\left(\frac{1}{2} \frac{v^{2}}{c^{2}}+\frac{1}{4} \frac{v^{2}}{c^{2}}+\ldots \ldots \ldots\right)$
(e) The spin-orbit interaction for an electron in $\mathrm{n}=10$ excited state is just as strong as that for the electron in the ground state $\mathrm{n}=1$ for the H atom. \square True $\sqrt{ }$ False
Give a brief reason justifying your answer in the little space below \& if false, rectify the statement:

$$
\begin{aligned}
& \left\langle\mathrm{H}_{\text {spin-orbit }}\right\rangle=-\mathrm{E}_{\mathrm{n}}(\mathrm{Z} \alpha)^{2} \frac{\left\{\mathrm{j}(\mathrm{j}+1)-\ell(\ell+1)-\frac{3}{4}\right\}}{2 \mathrm{n} \ell\left(\ell+\frac{1}{2}\right)(\ell+1)} \\
& \Rightarrow\left\langle H_{\text {spin-orbit }}\right\rangle \alpha \frac{1}{n^{2}}
\end{aligned}
$$

Q5. The first Foldy-Woutheysen transformation of the Dirac Hamiltonian

$$
\begin{aligned}
\mathrm{H} & =\beta \mathrm{mc}^{2}+\mathrm{c} \vec{\alpha} \cdot(\overrightarrow{\mathrm{p}}-\mathrm{e} \overrightarrow{\mathrm{~A}})+\mathrm{e} \phi \\
& =\beta \mathrm{mc}^{2}+\quad \theta+\quad \varepsilon \quad\{\text { where } \theta=\mathrm{c} \vec{\alpha} \cdot(\overrightarrow{\mathrm{p}}-\mathrm{e} \overrightarrow{\mathrm{~A}}) \text { and } \varepsilon=\mathrm{e} \phi\}
\end{aligned}
$$

for an electron in an EM field is effected through the operator $S_{1}=\frac{-i \beta \theta}{2 \mathrm{mc}^{2}}$.
Find the coefficients X, B and C in the following expression:

$$
\mathrm{i}[\mathrm{~S}, \mathrm{H}]_{-}=\mathrm{X} \theta+\mathrm{B} \beta \theta^{2}+\mathrm{C}[\theta, \varepsilon]_{-}
$$

NOTE: You may use additional space at the end of this book, or a supplement (which also must be submitted), but the final answer MUST be given below in the space provided:

$$
\begin{array}{rlr}
\begin{aligned}
& \mathrm{i}[\mathrm{~S}, \mathrm{H}]_{-}=\mathrm{i}\left[\frac{-i \beta \theta}{2 \mathrm{mc}^{2}}, \beta \mathrm{mc}^{2}+\theta+\varepsilon\right]_{-} \\
&=\left[\frac{\beta \theta}{2 \mathrm{mc}^{2}}, \beta \mathrm{mc}^{2}\right]_{-}+\left[\frac{\beta \theta}{2 \mathrm{mc}^{2}}, \theta\right]_{-}-\left[\frac{\beta \theta}{2 \mathrm{mc}^{2}}, \varepsilon\right]_{-} \\
&=\frac{1}{2}\left(\beta \theta \beta-\beta^{2} \theta\right)+\frac{1}{2 \mathrm{mc}^{2}}\left(\beta \theta^{2}-\theta \beta \theta\right)+\frac{1}{2 \mathrm{mc}^{2}}(\beta \theta \varepsilon-\varepsilon \beta \theta) \\
&=\frac{1}{2}\left(-\beta \beta \theta-\beta^{2} \theta\right)+\frac{1}{2 \mathrm{mc}^{2}}\left(\beta \theta^{2}+\beta \theta \theta\right)+\frac{1}{2 \mathrm{mc}^{2}}(\beta \theta \varepsilon-\beta \varepsilon \theta) \\
& \mathrm{i}[\mathrm{~S}, \mathrm{H}]_{-}= \beta \theta=-\theta+\frac{\beta \theta^{2}}{\mathrm{mc}^{2}}+\frac{1}{2 \mathrm{mc}^{2}} \beta[\theta, \varepsilon]_{-} \\
& X=-1 ; B=\frac{1}{\mathrm{mc}^{2}} ; \mathrm{C}=\frac{\beta}{2 \mathrm{mc}^{2}} \\
&
\end{aligned}
\end{array}
$$

Q6(a). Consider 2-electron wavefunction $\psi\left(q_{1}, q_{2}\right)=\phi\left(\vec{r}_{1}, \vec{r}_{2}\right) \chi\left(\zeta_{1}, \zeta_{2}\right)$ made up as an antisymmetrized product of 1-electron spin-orbitals $\phi_{n_{i}, l_{i}, m_{i}}\left(\vec{r}_{j}\right) \chi_{m_{s_{i}}}\left(\zeta_{j}\right)$. Now, if the twoelectron state has for its spin-part the function given by $\chi\left(\zeta_{2}, \zeta_{1}\right)=+\chi\left(\zeta_{1}, \zeta_{2}\right)$, write its spatial-part $\phi\left(\vec{r}_{1}, \vec{r}_{2}\right)$ in the blank space below:
$\phi\left(\vec{r}_{1}, \vec{r}_{2}\right)=-\phi\left(\vec{r}_{1}, \vec{r}_{2}\right)$
$\rightarrow 2$ marks
Q6(b). Find the basis of spatial functions in which the coulomb interaction $1 / r_{12}$ has a diagonal representation and write your answer in the blank space below:

The required two-dimensional basis is:
$\left\{\varphi_{1}\left(\vec{r}_{1}\right) \varphi_{2}\left(\vec{r}_{2}\right), \varphi_{1}\left(\vec{r}_{2}\right) \varphi_{2}\left(\vec{r}_{1}\right)\right\}$ In this basis the coulomb interaction is not diagonal; so operate $T_{2 \times 2}=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}1 & -1 \\ 1 & 1\end{array}\right]$ on the basis to diagonalize.
$=T_{2 \times 2}\left[\begin{array}{l}\varphi_{1}\left(\vec{r}_{1}\right) \varphi_{2}\left(\vec{r}_{2}\right) \\ \varphi_{1}\left(\vec{r}_{2}\right) \varphi_{2}\left(\vec{r}_{1}\right)\end{array}\right]$
$=\frac{1}{\sqrt{2}}\left[\begin{array}{c}\varphi_{1}\left(\vec{r}_{1}\right) \varphi_{2}\left(\vec{r}_{2}\right)-\varphi_{1}\left(\vec{r}_{2}\right) \varphi_{2}\left(\vec{r}_{1}\right) \\ \varphi_{1}\left(\vec{r}_{1}\right) \varphi_{2}\left(\vec{r}_{2}\right)+\varphi_{1}\left(\vec{r}_{2}\right) \varphi_{2}\left(\vec{r}_{1}\right)\end{array}\right]=\left[\begin{array}{l}\phi^{\text {Triplet }} \\ \phi^{\text {Single }}\end{array}\right]$

Q6(c). Write in the space below the mathematical equality that expresses the Koopmans theorem and explain each term that goes into the equation.

$$
E\left(\psi^{(N)}\right)-E\left(\psi^{(N-1)}\right)_{\left(n_{k}=0\right)}=\varepsilon_{k}=-\lambda_{k k}
$$

$1^{\text {st }}$ term: Energy equation for N electron system
$2^{\text {nd }}$ term: Energy term for N-1 electron system, i.e after removal of one electron from kth orbital under frozen orbital approximation
The difference gives the energy of the kth orbital of the system. λ being the Lagrange variational multiplier; n_{k} occupation no: of kth electron.
$\rightarrow 3$ marks
Q6(d). Explain, in the space below, what is meant by the 'frozen orbital approximation'.
Variations in the single particle orbitals are made one at a time, which is to say that the other $\mathrm{N}-1$ orbitals are considered 'frozen' during the consideration of variation in each orbital.

Q7 Fill in the blanks below:
(i) Given that the total electron scattering wavefunction is:

$$
\begin{aligned}
& \psi_{\text {Tot }} \xrightarrow[r \rightarrow \infty]{\longrightarrow} \\
& \frac{1}{2 i k r} \sum_{l} c_{l}(2 l+1)\left[P_{l}(\cos \theta) e^{i\left(k r+\delta_{l}\right)}-P_{l}(-\cos \theta) e^{-i\left(k r+\delta_{l}\right)}\right]
\end{aligned}
$$

As per the 'outgoing' wave boundary conditions, $c_{l}=e^{i \delta_{l}(k)}$.
(ii) As per the 'ingoing' wave boundary conditions, $c_{l}=e^{-i \delta_{l}(k)}$.
(iii) The physical dimensions of the quantity

$$
\left.\left(\frac{\mathrm{qA}_{0}(\omega)}{\mathrm{mc}}\right)^{2}\left|\langle\mathrm{f}| \mathrm{e}^{\mathrm{i} \overrightarrow{\mathrm{k}} \cdot \overrightarrow{\mathrm{~F}}} \hat{\varepsilon} \bullet \vec{\nabla}\right| \mathrm{i}\right\rangle\left.\right|^{2} \times 2 \pi \delta(\tilde{\omega})
$$

are: T^{1} (transition probability per unit time)
(iv) In the presence of an electric field, the lifetime of the $2 s$ state of the hydrogen atom would (place a tick mark $\sqrt{ }$ in the appropriate box below):
decrease $\sqrt{ }$, , or remain same \square, or increase \square, as compared to the atom being just by itself in vacuum.
Reason (state in the space below):
In the presence of the applied electric field, the metastable 2 s state develops some character of the unstable $2 p$ state. This results in a slight shortening of the lifetime of the $2 s$ state via a radiative $(2 s, 2 p)$ mixed state to $1 s$ transition.

$$
\rightarrow 3+2=5 \text { marks for Q7. }
$$

Q8. Express the coupled angular momentum with $j=\frac{1}{2}, m=-\frac{1}{2}$ as a linear combination of direct product vectors resulting from the coupling of two angular momenta $j_{1}=1, j_{2}=\frac{1}{2}$.
Use the CGC tables given below and write your answer in the space provided below that:
Table $1^{3} .\left(\left.j_{1} \frac{1}{2} m_{1} m_{2} \right\rvert\, j_{1} \frac{1}{2} j m\right)$

$j=$	$m_{2}=\frac{1}{2}$	$m_{2}=-\frac{1}{2}$
$j_{1}+\frac{1}{2}$	$\sqrt{\frac{j_{1}+m+\frac{1}{2}}{2 j_{1}+1}}$	$\sqrt{\frac{j_{1}-m+\frac{1}{2}}{2 j_{1}+1}}$
$j_{1}-\frac{1}{2}$	$-\sqrt{\frac{j_{1}-m+\frac{1}{2}}{2 j_{1}+1}}$	$\sqrt{\frac{j_{1}+m+\frac{1}{2}}{2 j_{1}+1}}$

Write your answer in this box:

Given $j=1 / 2 ; m=-1 / 2$
For $m=-1 / 2$ the values m_{1} and m_{2} can take are $-1,1 / 2$ and $0,-1 / 2$
The direct product equation is given by
$\left|\frac{1}{2}-\frac{1}{2}\right\rangle=C_{1}\left|-1 \frac{1}{2}\right\rangle+C_{2}\left|0-\frac{1}{2}\right\rangle$ From the table C_{1} and C_{2} can be found.

$$
\begin{aligned}
& \mathrm{C}_{1} \text { : Given } \mathrm{j}_{1}=1 \text { and } \mathrm{j}=1 / 2 ; \mathrm{m}_{2}=1 / 2 \text { and } \mathrm{m}=-1 / 2 \\
& C_{1}=-\sqrt{\frac{j_{1}-m+\frac{1}{2}}{2 j_{1}+1}}=-\sqrt{\frac{1-\left(-\frac{1}{2}\right)+\frac{1}{2}}{2(1)+1}}=-\sqrt{\frac{2}{3}}
\end{aligned}
$$

C_{2} : Given $\mathrm{j}_{1}=1$ and $\mathrm{j}=1 / 2 ; \mathrm{m}_{2}=-1 / 2$ and $\mathrm{m}=-1 / 2$

$$
\begin{aligned}
& C_{2}=\sqrt{\frac{j_{1}+m+\frac{1}{2}}{2 j_{1}+1}}=-\sqrt{\frac{1+\left(-\frac{1}{2}\right)+\frac{1}{2}}{2(1)+1}}=\sqrt{\frac{1}{3}} \\
& \left|\frac{1}{2}-\frac{1}{2}\right\rangle=-\sqrt{\frac{2}{3}}\left|-1 \frac{1}{2}\right\rangle+\sqrt{\frac{1}{3}}\left|0-\frac{1}{2}\right\rangle
\end{aligned}
$$

$$
\left.\left\lvert\,\left(1, \frac{1}{2}\right) \frac{1}{2}\right.,-\frac{1}{2}\right)=-\sqrt{\frac{2}{3}}\left|-1 \frac{1}{2}\right\rangle+\sqrt{\frac{1}{3}}\left|0-\frac{1}{2}\right\rangle
$$

