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Module 1: Oscillations
Lecture 1: Oscillations



Oscillations are ubiquitous. It would be difficult to find something which never
exhibits oscillations. Atoms in solids, electromagnetic fields, multi-storeyed
buildings and share prices all exhibit oscillations. In this course we shall
restrict our attention to only the simplest possible situations, but it should be
borne in mind that this elementary analysis provides insights into a diverse
variety of apparently complex phenomena.

1.1 Simple Harmonic Oscillators SHO

We consider the spring-mass system shown in Figure 1.1. A massless spring,
one of whose ends is fixed has its other attached to a particle of mass m which
is free to move. We choose the origin x = 0 for the particle’s motion at the
position where the spring is unstretched. The particle is in stable equilibrium
at this position and it will continue to remain there if left at rest. We are
interested in a situation where the particle is disturbed from equilibrium. The
particle experiences a restoring force from the spring if it is either stretched or
compressed. The spring is assumed to be elastic which means that it follows
Hooke’s law where the force is proportional to the displacement F = −kx with

Figure 1.1: Spring-mass system
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Figure 1.2: Displacement of the oscillator as a function of time for two different
frequencies.

spring constant k.
The particle’s equation of motion is

m
d2x

dt2
= −kx (1.1)

which can be written as
ẍ + ω2

0x = 0 (1.2)

where the dots¨denote time derivatives and

ω0 =

√

k

m
(1.3)

It is straightforward to check that

x(t) = A cos(ω0t + φ) (1.4)

is a solution to eq. (1.2).
We see that the particle performs sinusoidal oscillations around the equi-

librium position when it is disturbed from equilibrium. The angular frequency
ω0 of the oscillation depends on the intrinsic properties of the oscillator. It
determines the time period

T =
2π

ω0

(1.5)

and the frequency ν = 1/T of the oscillation. Figure 1.2 shows oscillations for
two different values of ω0.
Problem 1: What are the values of ω0 for the oscillations shown in Figure 1.2?
What are the corresponding spring constant k values if m = 1 kg?
Solution: For A ω0 = 2π s−1 and k = (2π)2 Nm−1; For B ω0 = 3π s−1 and
k = (3π)2 Nm−1

The amplitude A and phase φ are determined by the initial conditions.
Two initial conditions are needed to completely specify a solution. This follows
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Figure 1.3: Displacement of the oscillator as a function of time for different
initial conditions.

from the fact that the governing equation (1.2) is a second order differential
equation. The initial conditions can be specified in a variety of ways, fixing the
values of x(t) and ẋ(t) at t = 0 is a possibility. Figure 1.3 shows oscillations
with different amplitudes and phases.
Problem 2: What are the amplitude and phase of the oscillations shown in
Figure 1.3?
Solution: For C, A=1 and φ = π/3; For D, A=1 and φ = 0; For E, A=1.5
and φ = 0;

1.2 Complex Representation.

Complex numbers provide are very useful in representing oscillations. The
amplitude and phase of the oscillation can be combined into a single complex
number which we shall refer to as the complex amplitude

Ã = Aeiφ . (1.6)

Note that we have introduced the symbol ˜ (tilde) to denote complex numbers.
The property that

eiφ = cos φ + i sin φ (1.7)

allows us to represent any oscillating quantity x(t) = A cos(ω0t+φ) as the real
part of the complex number x̃(t) = Ãeiω0t,

x̃(t) = Aei(ω0t+φ) = A[cos(ω0t + φ) + i sin(ω0t + φ)] . (1.8)

We calculate the velocity v in the complex representation ṽ = ˙̃x. which
gives us

ṽ(t) = iω0x̃ = −ω0A[sin(ω0t + φ) − i cos(ω0t + φ)] . (1.9)

Taking only the real part we calculate the particle’s velocity

v(t) = −ω0A sin(ω0t + φ) . (1.10)
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Figure 1.4: Displacement and velocity as a function of time.
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Figure 1.5: Harmonic oscillator potential energy.

The complex representation is a very powerful tool which, as we shall see later,
allows us to deal with oscillating quantities in a very elegant fashion.

Figure (1.4) shows the plots of displacement and velocity of the particle
described by the equations, (1.8) and (1.10) for amplitude, A = 2 units, phase,
φ = 30◦ and angular frequency, ω0 = π rad/sec.

Problem 3: A SHO has position x0 and velocity v0 at the initial time
t = 0. Calculate the complex amplitude Ã in terms of the initial conditions
and use this to determine the particle’s position x(t) at a later time t.

Solution: The initial conditions tell us that Re(Ã) = x0 and Re(iω0Ã) =
v0. Hence Ã = x0−iv0/ω0 which implies that x(t) = x0 cos(ω0t)+(v0/ω0) sin(ω0t).

1.3 Energy.

In a spring-mass system the particle has a potential energy V (x) = kx2/2
as shown in Figure 1.5. This energy is stored in the spring when it is either
compressed or stretched. The potential energy of the system

U =
1

2
kA2 cos2(ω0t + φ) =

1

4
mω2

0A
2{1 + cos[2(ω0t + φ)]} (1.11)
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oscillates with angular frequency 2ω0 as the spring is alternately compressed
and stretched. The kinetic energy mv2/2

T =
1

2
mω2

0A
2 sin2(ω0t + φ) =

1

4
mω2

0A
2{1 − cos[2(ω0t + φ)]} (1.12)

shows similar oscillations which are exactly π out of phase.
In a spring-mass system the total energy oscillates between the potential

energy of the spring (U) and the kinetic energy of the mass (T ). The total
energy E = T + U has a value E = mω2

0A
2/2 which remains constant.

The average value of an oscillating quantity is often of interest. We denote
the time average of any quantity Q(t) using 〈Q〉 which is defined as

〈Q〉 = lim
T→∞

1

T

∫ T/2

−T/2
Q(t)dt . (1.13)

The basic idea here is to average over a time interval T which is significantly
larger than the oscillation time period.

It is very useful to remember that 〈cos(ω0t + φ)〉 = 0. This can be easily
verified by noting that the values sin(ω0t + φ) are bound between −1 and +1.
We use this to calculate the average kinetic and potential energies both of
which have the same values

〈U〉 = 〈T 〉 =
1

4
mω2

0A
2 . (1.14)

The average kinetic and potential energies, and the total energy are all
very conveniently expressed in the complex representation as

E/2 = 〈U〉 = 〈T 〉 =
1

4
mṽṽ∗ =

1

4
kx̃x̃∗ (1.15)

where ∗ denotes the conjugate of a complex number.
Problem 4: The mean displacement of a SHO 〈x〉 is zero. The root mean

square (rms.) displacement
√

〈x2〉 is useful in quantifying the amplitude of

oscillation. Verify that the rms. displacement is
√

x̃x̃∗/2.

Solution:
√

〈x2(t)〉 =
√

A2〈cos2(ω0t + φ)〉 =
√

A2/2 =
√

ÃeiωtÃ∗e−iωt/2 =
√

x̃x̃∗/2

1.4 Why study the SHO?

What happens to a system when it is disturbed from stable equilibrium? This
question that arises in a large variety of situations. For example, the atoms in
many solids (eg. NACl, diamond and steel) are arranged in a periodic crystal
as shown in Figure 1.6. The periodic crystal is known to be an equilibrium
configuration of the atoms. The atoms are continuously disturbed from their
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Figure 1.6: Atoms in a Crystal.

equilibrium positions (shown in Figure 1.6) as a consequence of random ther-
mal motions and external forces which may happen to act on the solid. The
study of oscillations in the atoms disturbed from their equilibrium position is
very interesting. In fact the oscillations of the different atoms are coupled, and
this gives rise to collective vibrations of the whole crystal which can explain
properties like the specific heat capacity of the solid. We shall come back to
this later, right now the crucial point is that each atom behaves like a SHO if
we assume that all the other atoms remain fixed. This is generic to all systems
which are slightly disturbed from stable equilibrium.

We now show that any potential V (x) is well represented by a SHO poten-
tial in the neighbourhood of points of stable equilibrium. The origin of x is
chosen so that the point of stable equilibrium is located at x = 0. For small
values of x it is possible to approximate the function V (x) using a Taylor series

V (x) ≈ V (x)x=0 +

(

dV (x)

dx

)

x=0

x +
1

2

(

d2V (x)

dx2

)

x=0

x2 + ... (1.16)

where the higher powers of x are assumed to be negligibly small. We know that
at the points of stable equilibrium the force vanishes ie. F = −dV (x)/dx = 0
and V (x) has a minimum.

k =

(

d2V (x)

dx2

)

x=0

> 0 . (1.17)

This tells us that the potential is approximately

V (x) ≈ V (x)x=0 +
1

2
kx2 (1.18)

which is a SHO potential. Figure 1.7 shows two different potentials which are
well approximated by the same SHO potential in the neighbourhood of the
point of stable equilibrium. The oscillation frequency is exactly the same for
particles slightly disturbed from equilibrium in these three different potentials.

The study of SHO is important because it occurs in a large variety of
situations where the system is slightly disturbed from equilibrium. We discuss
a few simple situations.
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Figure 1.7: Various Potentials.
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Figure 1.8: (a) Simple Pendulum and (b) LC Circuit.

Simple pendulum

The simple pendulum shown in Figure 1.8(a) is possibly familiar to all of us.
A mass m is suspended by a rigid rod of length l, the rod is assumed to be
massless. The gravitations potential energy of the mass is

V (θ) = mgl[1 − cos θ] . (1.19)

For small θ we may approximate cos θ ≈ 1− θ2/2 whereby the potential is

V (θ) =
1

2
mglθ2 (1.20)

which is the SHO potential. Here dV (θ)/dθ gives the torque not the force.
The pendulum’s equation of motion is

Iθ̈ = −mglθ (1.21)

where I = ml2 is the moment of inertia. This can be written as

θ̈ +
g

l
θ = 0 (1.22)
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which allows us to determine the angular frequency

ω0 =

√

g

l
(1.23)

LC Oscillator

The LC circuit shown in Figure 1.8(b) is an example of an electrical circuit
which is a SHO. It is governed by the equation

Lİ +
Q

C
= 0 (1.24)

where L refers to the inductance, C capacitance, I current and Q charge. This
can be written as

Q̈ +
1

LC
Q = 0 (1.25)

which allows us to identify

ω0 =

√

1

LC
(1.26)

as the angular frequency.

Torsional pendulum

The equation for the torsional pendulum (figure 1.9(a)) is the following.

I
d2θ

dt2
+ κθ = 0, (1.27)

where I is the moment of inertia of the object undergoing torsional oscillation
about the axis of rotation and κ is the torsional constant. Angular frequency

can be read off directly as ω0 =
√

κ
I

and hence the time period, T = 2π
√

I
κ
.

Physical pendulum or Compound pendulum

The equation of motion for a compound pendulum shown in (Figure 1.9(b))
is,

I
d2θ

dt2
= −Mgd sin θ, (1.28)

where I is the moment of inertia about an axis perpendicular to the plane of
oscillations through the point of suspension. For small oscillations(θ < 4◦) one
can write the above equation (1.29) approximately as,

d2θ

dt2
+

Mgd

I
θ = 0. (1.29)

The above gives time period as T = 2π
√

I
Mgd

.

Problem 5: Obtain the simple pendulum results as a special case of the
compound pendulum.
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Figure 1.9: (a) Torsional pendulum and (b) Physical pendulum.

Problems

6. An empty tin can floating vertically in water is disturbed so that it executes
vertical oscillations. The can weighs 100 gm, and its height and base
diameter are 20 and 10 cm respectively. [a.] Determine the period of the

oscillations. [̇b.] How much mercury need one pour into the can to make
the time period 1s? (0.227 Seconds, 1.73 cm )

7. A SHO with ω0 = 2 s−1 has initial displacement and velocity 0.1 m and
2.0 ms−1 respectively. [a.] At what distance from the equilibrium posi-
tion does it come to rest? [b.] What are the rms. displacement and
rms. velocity? What is the displacement at t = π/4 s?

8. A SHO with ω0 = 3 s−1 has initial displacement and velocity 0.2 m and
2 ms−1 respectively. [a.] Expressing this as x̃(t) = Ãeiω0t, determine
Ã = a+ ib from the initial conditions. [b.] Using Ã = Aeiφ, what are the
amplitude A and phase φ for this oscillator? [c.] What are the initial
position and velocity if the phase is increased by π/3?

9. A particle of mass m = 0.3 kg in the potential V (x) = 2ex2/L2

J (L = 0.1 m)
is found to behave like a SHO for small displacements from equilibrium.
Determine the period of this SHO.

10. Calculate the time average 〈x4〉 for the SHO x = A cos ωt.




