## Unit - III

## Small Signal Amplified

3.1 A transistor is said to be in a quiescent stage when
(a) Emitter junction bias is just equal to collector junction bias.
(b) no currents are flowing
(c) no signal is applied to the input
(d) it is unbiased
3.2 A transistor in amplifier circuit is biased such that
(a) emitter junction is reverse biased and collector junction is forward biased
(b) emitter junction is forward biased and collector junction is reverse biased
(c) both junctions are forward biased
(d) Both junctions are reverse biased.
3.3 The CB amplifier has fewer applications because
(a) It exhibits poor current gain
(b) It exhibits very low input impedance.
(c) It exhibits high output impedance
(d) It exhibits poor power gain
3.4 Which of the following statements is not correct for emitter follower circuit?
(a) It raises power level.
(b) It exhibits high input impedance and low output impedance
(c) It has high current gain.
(d) It has high voltage gain
3.5 In the section of CE amplifier shown in the fia.., the input impedance $Z_{i(b a s e)}$ is

(a) $50 \mathrm{k} \Omega$
(b) $1 \mathrm{k} \Omega$
(c) $50 \Omega$
(d) $20 \Omega$
3.6 The most striking feature of CE amplifier responsible for its wide use is,
(a) It has high current gain
(b) It has high voltage gain
(c) It has a phase difference of $180^{\circ}$ between input and output.
(d) It shows input and output impedances of the same order.
3.7 Assuming $\mathrm{V}_{\mathrm{BE}}=0.7 \mathrm{~V}$ and $\beta=50$ for the transistor in the circuit shown in figure, the value of $R_{B}$ for $V_{C E}=2 V$ is
(a) $200 \mathrm{k} \Omega$
(b) $243 \mathrm{k} \Omega$
(c) $283 \mathrm{k} \Omega$
(d) $300 \mathrm{k} \Omega$
3.8 The common emitter amplifier shown in figure is biased using a 1 mA ideal current source. The approximate base current value is,

$$
V C C=5 V
$$


(a) $0 \mu \mathrm{~A}$
(b) $10 \mu \mathrm{~A}$
(c) $100 \mu \mathrm{~A}$
(d) $1000 \mu \mathrm{~A}$

Answer:
$\begin{array}{lccccc}3.1 \text { (c) } & 3.2 \text { (b) } & 3.3 \text { (b) } & 3.4 \text { (d) } & 3.5 \text { (a) } & 3.6 \text { (d) } \\ 3.7 \text { (c) } & 3.8 \text { (b) } & & & & \end{array}$

