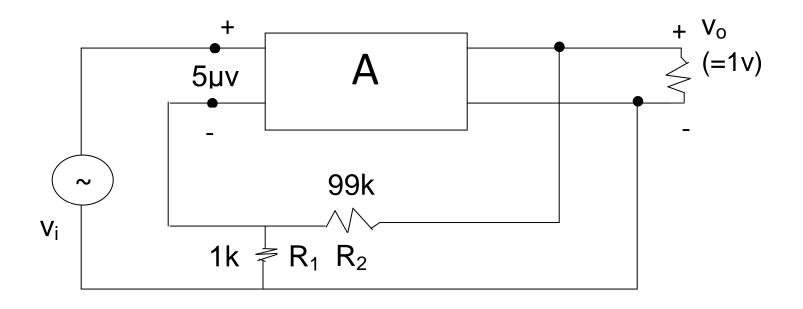
Module – 4

Unit – 4


Feedback in Amplifiers

Review Questions:

- 1. What are the drawbacks in a electronic circuit not using proper feedback?
- 2. What is positive feedback? Positive feedback is avoided in amplifier circuits. Discuss.
- 3. Explain negative feedback. In what ways does it modify amplifier performance?
- 4. What are the different types of negative feedbacks? Draw appropriate circuits.
- 5. Write the basic expression for voltage gain of an amplifier with feedback and explain the terms used in the expression.
- 6. What type of feedback will you use in an amplifier to
 - (i) Increase input impedance
 - (ii) Decrease input impedance
- 7. Draw the gain-frequency response of an RC coupled amplifier. Discuss fall in gain at very low and at very high frequencies.
- 8. Two identical amplifier stages having gains of 50 each and phase shift between input and output signals of 180° each are cascaded. How much is the over all gain and phase shift of 2-stage amplifier?
- 9. What are the different methods of coupling signals used in amplifiers? Discuss their advantages and disadvantages.
- 10. Two transistors having current gains of 100 and 80 respectively form Darlington pair. How much is current gain of the Darlington pair?

Problems:-

4.1 In the series – shunt feedback amplifier shown in fig. calculate the voltage gains without feedback, A, and with feedback A_{FB} .

The open loop gain A, is defined as the ratio of output voltage, v_o . to the error voltage, v_e , which is input to the basic amplifier.

Therefore,

A =
$$\frac{v_o}{v_e}$$
 = $\frac{1V}{5 \times 10^{-6}V}$ = 2 × 10⁵
A = 2 × 10⁵

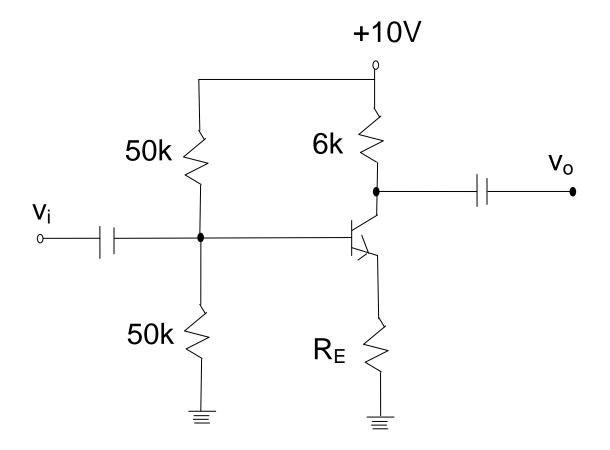
Voltage gain of feedback amplifier, A_{FB}, is expressed as,

$$A_{FB} = \frac{A}{1 + AB}$$

Where B is gain of the feedback network.

Since AB >> 1

$$A_{FB} = \frac{A}{AB} = \frac{1}{B}$$


And B is,

$$B = \frac{R_1}{R_1 + R_2} = \frac{1k}{1k + 99k} = \frac{1}{100} = 0.01$$

Therefore,

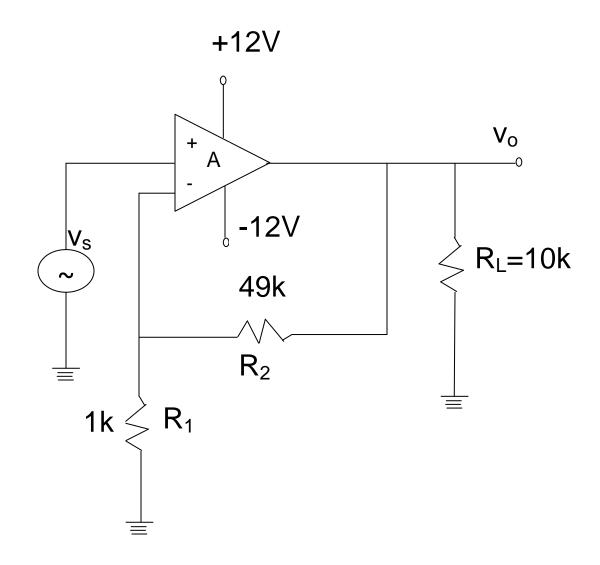
$$A_{FB} = \frac{1}{B} = \frac{1}{0.01} = 100$$

 $A_{FB} = 100$

4.2 Common emitter (CE) amplifier shown in fig. has voltage gain of 200 when $R_E = 0$. Stability is brought through negative feedback by adding resistor R_E . Calculate the value of resistor R_E using feedback concepts so that final voltage gain (= A_{FB}) is equal to 100.

The value of gain of feedback network, B can be obtained using the basic feedback relation,

$$A_{FB} = \frac{A}{1 + AB}$$


Since $A_{FB} = 100$ and A = 200, we have

$$100 = \frac{200}{1 + 200 \times B} \approx \frac{1}{B}$$

or $B = \frac{1}{100}$

Further, the value of B is given by the ratio,

$$B = \frac{R_E}{R_C}$$

or, $R_E = BR_C = \frac{6 \times 10^3}{100} = 60 \Omega$
 $R_E = 60 \Omega$

4.3 The feedback amplifier shown in fig. makes use of an op amp with internal gain (open loop gain) $A = 10^5$. How much is the output voltage for input signal $v_s = 2mV$ in the circuit shown.

The gain of feedback amplifier,

 $A_{\text{FB}}\text{, is}$

$$A_{FB} = \frac{A}{1 + AB} \cong \frac{1}{B}$$

Because AB>> 1

And, gain of feedback network, B, is

$$B = \frac{R_1}{R_1 + R_2} = \frac{1k}{1k + 49k} = \frac{1}{50}$$

Therefore,

$$A_{FB} = \frac{1}{B} = 50$$

And the output voltage, v_0 , is

 $v_o = A_{FB} X v_s$

or $v_0 = 100 \text{ mV}$

4.4 An amplifier exhibits distortion in the form of voltage fluctuations of \sim 10%. These fluctuations are to be restricted to \sim 1% by incorporating negative feedback in the amplifier circuit. If ultimate gain is desired to be 120, what should be the open loop gain of the amplifier?

Solution:-

The distribution, D_{FB} in an amplifier with feedback and distortion, D without feedback in the amplifier are related as,

$$D_{FB} = \frac{D}{(1 + AB)}$$


Where A is open loop gain of amplifier and B is the gain of feedback network.

Now,
$$D = 10\% = \frac{10}{100}$$
 (given)
and $D_{FB} = 1\% = \frac{1}{100}$ (given)

Therefore, using above equation,

$$\frac{1}{10} = \frac{1}{(1+AB)}$$

or, $(1+AB) = 10$
Now, $A_{FB} = \frac{A}{(1+AB)} = \frac{A}{10}$
or, $A = 10 \times A_{FB} = 10 \times 120$ (:: $A_{FB} = 120$)
or, $A = 1200$

4.5 Figure shows an op amp circuit with voltage series feedback through resistors R₁ and R₂. The internal gain of op amp is 5 X 10⁴ and input impedance is 100k Ω . Find out the gain and input impedance of the amplifier with feedback.

The gain of amplifier with feedback, A_{FB}, is

$$A_{FB} = \frac{A}{1 + AB}$$

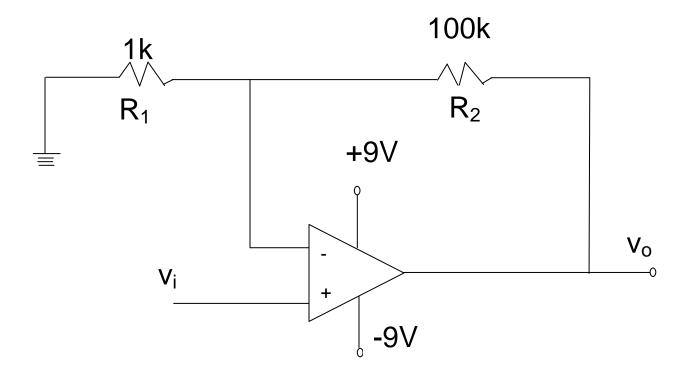
Where A is open loop gain of amplifier and B is gain of feedback network.

Since AB>> 1

$$A_{FB} = \frac{A}{1 + AB} \approx \frac{1}{B}$$

Now, $B = \frac{R_1}{R_1 + R_2} = \frac{2k}{2k + 198k} = \frac{1}{100}$

Therefore,


$$A_{FB} = \frac{1}{B} = 100$$
$$A_{FB} = 100$$

The input impedance with and without feedback in a voltage-series circuit are related as,

 $Z_{i(FB)} = (1 + AB) Z_i \approx ABZ_i$ Or $Z_{i(FB)} = 5 \times 10^4 \times 10^{-2} \times 100k$

Or $Z_{i(FB)}\,$ = 50 $M\Omega$

4.6 An op amp has open loop band width of 5Hz at gain 2 X 10^5 . Feedback is incorporated and resistors R₁ and R₂ form the feedback network. Find the bandwidth of the amplifier shown in fig.

The gain of feedback network, B, in the circuit of fig. is

$$B = \frac{R_1}{R_1 + R_2} = \frac{1k}{1k + 100k} \approx \frac{1}{100} = 10^{-2}$$

The bandwidth with feedback, $f_{(FB)}$ and without feedback (Open loop bandwidth), $f_2,$ are related as

$$f_{(BW)} = (1 + AB) f_2$$

Where A is open loop gain of op amp

- or $f_{(BW)} \approx ABf_2$
- or $f_{(BW)} = 2 \times 10^5 \times 10^{-2} \times 5 H_Z$
- or $f_{(BW)} = 10 \text{ kH}_Z$

4.7 Two RC coupled amplifiers are connected to form a 2-stage amplier. If the lower and upper cutoff frequencies of each individual amplifier respectively are 100 H_Z and 20 kH_Z , What these frequencies are for the 2-stage amplifier?

Solution:-

For multi-stage amplifier consisting of n identical amplifying stages, the lower cut off $f_{1(multi)}$ is expressed as,

$$f_{1(multi)} = \frac{f_1}{\sqrt{2^{1/n} - 1}}$$
(1)

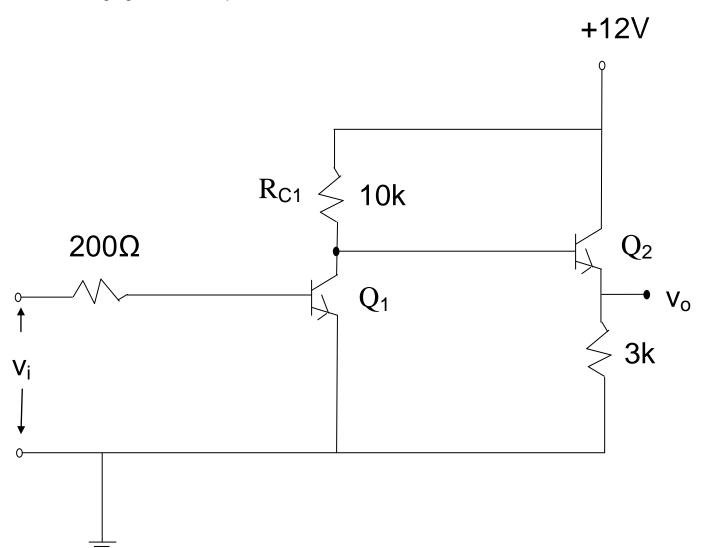
Where f_1 is lower cut-off of individual stages.

And the upper cutoff $f_{2(multi)}$ is expressed as,

$$f_{2(multi)} = f_2 \sqrt{2^{1/n} - 1}$$
 (2)

Where f_2 is upper cut-off of individual stages.

Therefore, the lower cut-off of 2-stages amplifier (Eq(1)) is


$$f_{1(2-stage)} = \frac{100}{\sqrt{2^{1/2} - 1}} = \frac{100}{0.643}$$

or $f_{1(2-stage)} = 155.5 \ H_Z$

Similarly, the upper cutoff of the 2-stage amplifier (Eq 2) , is

$$f_{2(2-stage)} = f_2 \sqrt{2^{1/2} - 1}$$

20× 0.643 kH_z
or $f_{2(2-stage)} = 12.8 \text{ kH}_z$

Thus the band width gets reduced in a multi-stage amplifier.

4.8 The two-stage amplifier shown in fig uses transistors Q_1 and Q_2 , both having current gain β of 80 and dynamic emitter resistance, r'_e , of 25 Ω each. Find out the over all voltage gain of the amplifier.

In a multi-stage amplifier, it is convenient to analyse the last stage (output stage) first.

In the present case, the last stage $(Q_2 - stage)$ is emitter follower which has voltage gain of unity. Then the over all gain of two-stage amplifier(product of gains of individual stages) is same as gain of first stage which is common emitter amplifier in fig.

The gain of CE amplifier is

$$A_{V} = A_{V1} = \frac{r_{c1}}{r_{E1} + r'_{e}}$$

Since $R_E = 0$ (for Q_1 transistor), $r_{E1} = 0$

Then,

$$A_V = \frac{r_{c1}}{r'_e}$$

Where r_{c1} is the effective impedence seen by the collector of transistor Q_1 .

That is,

$$r_{c1} = R_{C1} || Z_{i(base)2}$$

The impedance, $Z_{i(base)2}$ at the base of transistor Q_2 is,

$$Z_{i(base)2} = \beta. R_{E2}$$

or $Z_{i(base)2} = 240 k\Omega$

Therefore,

$$R_{c1} = R_{C1} || Z_{i(base)2}$$
$$= 10k || 240k$$
or r_{c1} = 9.6 kΩ

Therefore, over all gain of amplifier of fig is

$$A_V = \frac{r_{c1}}{r'_e} = \frac{9.6 \times 10^3}{25} = 384$$

or $A_V = 384$