Module - 3

Unit - 3

Small Signal BJT Amplifiers

Review Questions:

1. Define h - parameters for a transistor. Why are these called hybrid parameters? What are their units?
2. Out of four h - parameters, two are most important. Which are these? And why the other two have less significance?
3. h_{i} and Z_{i} both represent input impedance in h - and Z systems of parameters but they are most equal. Why?
4. What are r - parameters and how are they superior to $h-$ parameters?
5. Common - base (CB) amplifier has limited applications. Why?
6. Among BJT amplifiers, common-emitter amplifier is most favoured. Give reasons.
7. What is an emitter follower? Discuss its main applications.
8. What are, in general, performance parameters of an amplifier?

Problems:

3.1 Calculate dynamic emitter resistance r_{e} (also called ac emitter resistance) of the transistor in the circuit of fig. $\left(\mathrm{V}_{\mathrm{BE}}=0.7 \mathrm{~V}\right)$

Solution:-

The dynamic emitter resistance, r_{e}^{\prime}, is expressed as,
$r_{e}^{\prime}=\frac{25 m v}{I_{E}}$
Where I_{E} is dc emitter current.
The dc emitter current in the circuit (i.e, voltage drop across resistor R_{E}, divided by the resistance) is
$I_{E}=\frac{V_{E E}-V_{B E}}{R_{E}}=\frac{5-0.7}{4.3 \times 10^{3}}=1 \mathrm{~mA}$
Therefore,
$r_{e}^{\prime}=\frac{25 m V}{1 m A}=25 \Omega$

That is,
$r_{e}^{\prime}=25 \Omega$
3.2 How much is the voltage gain of the amplifier (fig) if the dynamic emitter resistance, r^{\prime} e, is 25Ω. The current gain of the transistor is 80 .

How much is input impedance of the amplifier.
The coupling and bypass capacitors may be assumed of negligible impedance at the signal frequency. Take $\mathrm{V}_{\mathrm{BE}}=0.7 \mathrm{~V}$

Solution:-

The voltage gain A_{V}, for a common emitter amplifier with resistor R_{E} by-passed is $A_{V}=\frac{r_{c}}{r_{e}^{\prime}}$

Where r_{c} is effective (ac) impedance seen by the collector and it is

$$
r_{c}=\mathrm{R}_{\mathrm{c}}\left\|\mathrm{R}_{\mathrm{L}}=5 \mathrm{k}\right\| 5 \mathrm{k}=2.5 \mathrm{k} \Omega
$$

And $r_{e}^{\prime}=25 \Omega$ (given)

Therefore,

$$
A_{V}=\frac{2.5 \times 10^{3} \Omega}{25 \Omega}=100
$$

First we find out impedance between base (point A in Fig 3.2) and ground, $Z_{i(b a s e)}$ and we know, it is given by

$$
\begin{aligned}
\begin{aligned}
\mathrm{Z}_{\mathrm{i}(\text { base })} & =\beta r_{e}^{\prime} \\
& =80 \times 25 \\
\text { or } \mathrm{Z}_{\mathrm{i}(\text { base })} & =2 \mathrm{k} \Omega
\end{aligned}
\end{aligned}
$$

And, input impedance of the amplifier $\mathrm{Z}_{\mathrm{i}(\mathrm{amp})}$ is,
$Z_{i(\text { amp })}=R_{B} \| Z_{i(\text { base })}$
Where R_{B} is effective biasing resistance, and

$$
R_{B}=R_{1}\left\|R_{2}=12 k\right\| 6 k=4 k \Omega
$$

Therefore,

$$
\begin{aligned}
& Z_{i(a m p)}=4 \mathrm{k} \| 2 \mathrm{k} \\
& \text { or } Z_{i(a m p)}=1.33 \mathrm{k} \Omega
\end{aligned}
$$

3.3 Calculate the value of resistor R_{C} so that the voltage gain of the amplifier in fig is 100. Capacitors C_{1}, C_{2}, and C_{3} may be assumed short at signal frequency.

Solution:-

In case, R_{E} is by-passed, the voltage gain A_{v} of the amplifier is,

$$
A_{V}=\frac{r_{c}}{r_{e}^{\prime}}
$$

Where r_{c} is the effective (ac) resistance seen by the collector of the transistor, and r_{e}^{\prime} is the dynamic resistance of the emitter.

We know,
$r_{e}^{\prime}=\frac{25 m v}{I_{E}}$
Now,
$I_{E}=\frac{V_{E E}-V_{B E}}{R_{E}}=\frac{12.0-0.7}{5 \times 10^{3}}=2.26 \mathrm{~mA}$
Therefore,
$r_{e}^{\prime}=\frac{25 m V}{2.26 m A} \approx 11 \Omega=0.011 \mathrm{k} \Omega$
And,
$\mathrm{R}_{\mathrm{C}}=\mathrm{R}_{\mathrm{C}} \| \mathrm{R}_{\mathrm{L}}=\frac{4 R_{C}}{R_{C}+4}$
Where resistances have been taken in $\mathrm{k} \Omega$
Therefore,

$$
\begin{aligned}
A_{V} & =\frac{r_{c}}{r_{e}^{\prime}} \\
& =\left(\frac{4 R_{c}}{R_{c}+4}\right) \frac{1}{0.011}
\end{aligned}
$$

As $A_{v}=100$ (given), R_{c} (in $k \Omega$) is,
$100=\frac{4 R_{c}}{\left(R_{c}+4\right)(0.011)}$
or $R_{c}=1.51 \mathrm{k} \Omega$
3.4 Find out the smallest value of load R_{L} in the amplifier circuit shown in fig so that the voltage gain is at least 40 . The dynamic emitter resistance of the transistor is 25Ω. The coupling and by-pass capacitors may be assumed short at signal frequency.

Solution:-

The voltage gain of the common emitter amplifier with resistor R_{E} by-passed (see fig.) is expressed as

$$
A_{V}=\frac{r_{c}}{r_{e}^{\prime}}=40 \quad \text { (required gain) }
$$

Where r_{c} is effective ac impedance seen by the collector, Which is
$\mathrm{r}_{\mathrm{C}}=\mathrm{R}_{\mathrm{C}} \| \mathrm{R}_{\mathrm{L}}=\frac{R_{C} R_{L}}{R_{C}+R_{L}}$
Taking resistances in $\mathrm{k} \Omega$
$r_{c}=\frac{3 R_{L}}{3+R_{L}}$
And,

$$
\begin{aligned}
& A_{V}=\left(\frac{3 R_{L}}{3+R_{L}}\right) \frac{1}{25 \times 10^{-3}}=40 \\
& \text { or } R_{L}=1.5 \mathrm{k} \Omega
\end{aligned}
$$

3.5 The silicon transistor in the common- base amplifier has the current gain α of 0.98 . Find the input impedance and voltage gain of the amplifier in fig. $\left(\mathrm{V}_{\mathrm{BE}}=0.7 \mathrm{~V}\right)$

Solution:-

The dc voltage sources have to be grounded for ac analysis of the amplifier. Then the input impedance of the CB amplifier (in fig.) is
$Z_{\text {i(amp) })}=R_{E} \| r^{\prime}{ }_{e} \approx r_{e}^{\prime}$
Where $r^{\prime}{ }_{e}$ is dynamic emitter resiatance and $r^{\prime}{ }_{e} \ll R_{E}$
Also,

$$
r_{e}^{\prime}=\frac{25 m V}{I_{E}}
$$

Where I_{E} is dc emitter current in the circuit
$I_{E}=\frac{\left|V_{E E}-V_{B E}\right|}{R_{E}}$
or, $I_{E}=\frac{9-0.7}{6 \times 10^{3}}=1.38 \mathrm{~mA}$
Therefore,

$$
r_{e}^{\prime}=\frac{25 m V}{1.38 m A} \approx 18 \Omega
$$

Thus, the input impedance $Z_{i(a m p)}$ is,
$Z_{\text {i(amp) }} \approx r_{e}^{\prime}=18 \Omega$
The low value of input impedance is the main reason for limited applications of CB amplifier.

The voltage gain of CB amplifier is expressed as,
$A_{V}=\frac{\alpha r_{c}}{r_{e}^{\prime}}$
Since, $r_{c}=R_{C}| | R_{L}=4 k| | 4 k=2 k \Omega=2000 \Omega$
Then ,
$A_{V}=\frac{0.98 \times 2000}{18}=108.8$
$A_{V}=108.8$
3.6 The transistor in the amplifier circuit shown in fig, has h - parameters, $\mathrm{h}_{\mathrm{ie}}=2 \mathrm{k} \Omega$ and $h_{f f}=80$. The values of $h_{o e}$ and $h_{r e}$ are negligible. Calculate the voltage gain and input impedance $\mathrm{Z}_{\text {i(amp) }}$ of the amplifier. Capacitors $\mathrm{C}_{1}, \mathrm{C}_{2}$, and C_{3} may be assumed short at signal frequency due to small impedances.

Solution:-

The magnitude of voltage gain with h-parameters $h_{\text {oe }}$ and $h_{r e}$ dropped, and emitter resistance R_{E} by-passed by capacitor C_{3} is

$$
\begin{aligned}
A_{V}= & \frac{h_{f e} \cdot Z_{i}}{h_{i e}} \\
& =\frac{80 \times 3 k \Omega}{2 k \Omega}=120
\end{aligned}
$$

Because the ac load at collector, $Z_{\text {I }}$, is
$Z_{I}=R_{C}\left\|R_{L}=6 k \mid\right\| 6 k=3 k \Omega$
Further, the impedance between base and ground, $\mathrm{Z}_{\mathrm{i}(\text { base })}$ is,
$Z_{i(b a s e)}=h_{i e}=2 k \Omega$
And, input impedance of amplifier, $Z_{i(a m p)}$ is,

$$
\begin{aligned}
& Z_{i(\text { amp })}=R_{1}| | R_{2}| | Z_{i(\text { base })} \\
& =20 \mathrm{k}| | 20 \mathrm{k}| | \mathrm{Z}_{\mathrm{i} \text { (base) }} \\
& =10 \mathrm{k}| | Z_{i(\text { base })} \\
& =10 \mathrm{k} \| 2 \mathrm{k} \\
& =1.6 \mathrm{k} \Omega \\
& \text { or } Z_{i(a m p)}=1.6 \mathrm{k} \Omega
\end{aligned}
$$

3.7 For the amplifier circuit shown in fig. calculate the voltage gain and input impedance of the amplifier when by-pass capacitor C_{3} is removed from the circuit.

Solution:-

With by-pass capacitor C_{3} (in fig.) removed, the gain of a amplifier falls and input impedance of the amplifier increases.

In case R_{E} is not by-passed, the magnitude of voltage gain A_{V} is

$$
A_{V}=\frac{Z_{l}}{R_{E}}=\frac{3 k}{2 k}=1.5
$$

And,
$Z_{\text {i(base) }}=h_{i e}+\left(1+h_{\text {fe }}\right) R_{E}$

$$
=2 \mathrm{k}+(1+80) \times 2 \mathrm{k}
$$

Or, $Z_{\text {ibase })}=164 \mathrm{k} \Omega$
And, input impedance of amplifier, $Z_{i(a m p)}$ is

$$
\begin{aligned}
Z_{i(\text { amp })}= & R_{1}\left\|R_{2}\right\| Z_{i(\text { base })} \\
& =20 \mathrm{k}\|20 \mathrm{k}\| 164 \mathrm{k} \\
& 10 \mathrm{k} \| 164 \mathrm{k}=9.4 \mathrm{k} \Omega
\end{aligned}
$$

or $Z_{\text {i(amp) }}=9.4 \mathrm{k} \Omega$
3.8 The emitter follower (common collector amplifier) shown in fig. uses a transistor with h-parameters $\mathrm{h}_{\mathrm{ie}}=4.5 \mathrm{k} \Omega, \mathrm{h}_{\mathrm{fe}}=120$. Other parameters h_{oe} and h_{re} have negligible effect on amplifier performance. Calculate voltage gain and input impedance of the amplifier. The coupling and by-pass capacitors may be assumed short at signal frequency.

Solution:-

Neglecting the effect of $h_{0 e}$ and $h_{r e}$ on amplifier performance, the voltage gain of emitter follower may be expressed as,
$\left|A_{V}\right|=\frac{h_{f c} \times Z_{e}}{h_{i c}+h_{f c} \cdot Z_{e}}$
Where Z_{e} is the effective load seen by the emitter, and it is
$Z_{e}=R_{E}\left\|R_{L}=3 k\right\| 6 k=2 k \Omega$
And using $\mathrm{h}_{\mathrm{fc}} \approx \mathrm{h}_{\mathrm{fe}}$ and $\mathrm{h}_{\mathrm{ic}}=\mathrm{h}_{\mathrm{ie}}$,
We have,

$$
\begin{aligned}
A_{V} & =\frac{h_{f e} \times Z e}{h_{i e}+h_{f e} Z_{e}} \\
& =\frac{120 \times 2 k \Omega}{4 k \Omega+(120 \times 2 k \Omega)}=\frac{240}{244}
\end{aligned}
$$

$$
A_{V}=0.98
$$

The input impedance as seen at the base w.r.t ground is,

$$
\begin{aligned}
Z_{i(\text { base })} & =h_{f \mathrm{f}} \cdot Z_{e}=h_{f e} \cdot Z_{e} \\
& =120 \times 2 \mathrm{k} \Omega=240 \mathrm{k} \Omega
\end{aligned}
$$

The input impedance of the amplifier (that is, after taking the effect of biasing resistors),
$Z_{i(\text { amp })}=R_{B} \| Z_{i(\text { base })}$
And the effective base resistance R_{B} is,
$R_{B}=R_{1}| | R_{2}=60 k \| 30 k=20 k \Omega$
Therefore,
$Z_{i(\text { amp })}=20 \mathrm{k}| | 240 \mathrm{k}=18.46 \mathrm{k} \Omega$
or $Z_{i(a m p)}=18.46 \mathrm{k} \Omega$

