Module 2 Unit 2 TRANSISTOR (BJT)

Review Questions

- 1 Define current gains α and β . How are they related?
- 2 In transistor design, the base has most critical features as compared to emitter and collector. Discuss.
- 3 Why do we bias a transistor? What are the considerations in choosing an appropriate biasing scheme?
- 4 Draw I V characteristics (Collector characteristics) for a transistor and discuss the salient features.
- 5 Explain 'base width modulation' and its influence on transistor characteristics.
- 6 What is collector feedback bias? How does this biasing provide stability to the circuit?
- 7 Give reasons for the wide use of 'voltage divider bias' in BJT amplifiers.
- 8 Discuss the flow of three currents I_E , I_B and I_C in a forward biased emitter junction and reverse biased collection junction.

Problems

2.1 A transistor has current gain of 0.99 when used in common base (CB) configuration. How much will be the current gain of this transistor in common emitter (CE) configuration ?

Solution :- The current gain in common base circuit is written as α , and it has been given equal to 0.99.

 α and current gain in common emitter configuration β are related as

$$\beta = \frac{\alpha}{1 - \alpha}$$

Therefore,

$$\beta = \frac{0.99}{1 - 0.99} = 99$$

or $\beta = 99$

2.2 Determine the minimum value of current gain β required to put the transistor in saturation when

 $V_{in} = +5V.$

Assume, $V_{BE(sat)} = 0.8 V$,

 $V_{CE(sat)} = 0.12 \text{ V}$

Solution:- Let I_B and I_C be base current and collector current respectively (see fig. above).

Taking +5V as input voltage V_{in} , the summation of voltages (Kirchhoff's voltage law, KVL) in the base-emitter loop gives

 $8 \times 10^3 \times I_B + V_{BE} - 5V = 0$

We assume that the transistor is in saturation, so that

$$V_{BE} = V_{BE(Sat)} = 0.8 V$$

Therefore,

 $80 \times 10^3 \times I_B + 0.8 \text{ V} - 5 \text{V} = 0$

or,
$$I_B = \frac{4.2V}{80 \times 10^3} = 0.0525 mA$$

Summation of voltages in the collector loop gives,

5 X 10³ X I_C + V_{CE} = 12 V
or
$$I_C = \frac{12 - 0.2}{5 \times 10^3} = 2.36 mA$$

And the condition for the transistor in saturation is that the minimum value of gain β ,

$$\beta_{\min} = \frac{I_c}{I_B} = \frac{2.36mA}{0.525mA} \approx 45,$$

or $\beta_{min} = 45$.

- **2.3** The fixed bias circuit shown in figure uses a silicon transistor with $V_{BE} = 0.7V$.
- (a) Find the collector current, $I_{C},$ and voltage $V_{CE},$ if β of transistor is 60.
- (b) Find I_C and V_{CE} if β changes to 80.
- What conclusions may be drawn?

 $V_{CC} = R_B I_B + V_{BE}$

(a) Summation of voltages in base-emitter loop results in

or
$$I_B = \frac{V_{CC} - V_{BE}}{R_B} = \frac{9 - 0.7}{60 \times 10^3} = 0.138 \, mA$$

and,

$$I_{\rm C} = \beta I_{\rm B}$$

= 60 X 0.138 mA

$$I_{\rm C} = 8.28 \, \rm{mA}$$

Summation of voltages in the collector circuit gives,

$$R_{C}I_{C} + V_{CE} = V_{CC}$$

Or $V_{CE} = V_{CC} - I_{C}R_{C}$
= 9 - 8.28 X 10⁻³ X 0.5 X 10³
= 9 - 4.14
Or $V_{CE} = 4.86$ V

Thus the operating point values are

 I_{C} = 8.28 mA , and

 V_{CE} = 4.86 V

(b) Proceeding in the same way, and if the current gain β equals 80, then Since I_B = 0.138 mA, therefore I_C = β I_B = 80 X 0.138 mA or I_C = 12.42 mA And $V_{CE} = V_{CC} - I_C R_C$ = 9 - 12.42 X 10⁻³ X 0.5 X 10³ = 9 - 6.21 $V_{CE} = 2.79 V$ With β = 80, the operating point values are : $I_C = 12,42 \text{ mA}$, and $V_{CE} = 2.79 V$

CONCLUSIONS:-

Changes in collector current I_{C} when β changes from 60 to 80 are from 8.28 mA to 12.42 mA.

And V_{CE} changes from 4.86V to 2.79V.

These changes are drastic and operation may shift to regions to give distorted output.

2.4 Find out the operating point current I_{CQ} , and voltage V_{CEQ} in the circuit shown. ($V_{BE} = 0.7 \text{ V}$, β of transistor is 200).

Considering the potential difference across the resistor R_E , the emitter current I_E ($\approx I_C$) may be written as,

$$I_{E} \approx I_{C} = \frac{V_{EE} - V_{BE}}{R_{E}} = \frac{9 - 0.7}{4.3 \times 10^{3}}$$

or $I_C = I_{CQ} = 1.93 \text{ mA}$

Voltage summation in the collector circuit leads to,

$$V_{CC} = R_{C}I_{C} + V_{CE}$$

or $V_{CE} = V_{CC} - R_{C}I_{C}$
 $= 9 - 2.5 \times 10^{3} \times 1.93 \times 10^{-3}$
 $= 9 - 4.83$

or $V_{CE} = V_{CEQ} = 4.17V$

2.5 Calculate the approximate value for the base resistor R_B which will forward bias the emitter junction of silicon transistor ($\beta = 100$) in the circuit. Collectior – emitter voltage V_{CE} of 2.5 V reverse biases the collector.

 $(V_{BE} = 0.7V)$

We assume that the emitter junction is in forward bias and $V_{BE} = 0.7V$.

Summation of voltages in the base-emitter circuit results in,

 $R_BI_B + V_{BE} + R_EI_E = V_{CC}$

Since $I_C = I_E$,

and βI_B or $I_B = \frac{I_C}{\beta} = \frac{I_E}{\beta}$

Then above equation yields,

$$R_{B} \cdot \frac{I_{E}}{\beta} + V_{BE} + R_{E}I_{E} = V_{CC}$$

or $I_{E}\left(\frac{R_{B}}{\beta} + R_{E}\right) = V_{CC} - V_{BE} = 5.0 - 0.7$
or $I_{E}\left(\frac{R_{B}}{\beta} + R_{E}\right) = 4.3$ -----(A)

Now, summation of voltages in the collector - emitter circuit gives,

$$R_{C}I_{C} + V_{CE} + R_{E}I_{E} = V_{CC}$$

Because $I_C = I_E$

And substituting for other parameters

 $I_E(R_C + R_E) = V_{CC} - V_{CE} = 5.0 - 2.5 = 2.5$

or
$$I_E = \frac{2.5}{(R_C + R_E)} = \frac{2.5}{(1.5 + 1) \times 10^3} = 1 mA$$

Substituting $I_E = 1mA$ in eqⁿ (A)

$$1 \times 10^{-3} \left(\frac{R_B}{100} + 1 \times 10^3 \right) = 4.3$$

 $R_B = 330 \times 103 \Omega$

or $R_B = 330 \text{ k}\Omega$

2.6 The operating point values of current $I_C(=I_{CQ})$ and voltage $V_{CE}(=V_{CEQ})$ in the circuit have magnitudes of 0.9 mA and 3.72 V respectively when the current gain β for the transistor is 100. The transistor in the circuit is replaced by another one with β = 200. Calculate the new values of I_{CQ} and V_{CEQ} . What do you infer?

The venized voltage $V_{th}\,across\,R_2$ is

$$V_{TH} = \frac{2 \times 10^3}{2 \times 10^3 + 4 \times 10^3} \times V_{CC}$$
$$= \frac{2}{6} \times 6$$
$$= 2V$$

That is $V_{TH} = 2V$

And, as we have derived the relation earlier,

$$I_E = I_{CQ} = \frac{V_{TH} - V_{BE}}{R_E + R_{TH/\beta}}$$

Where The venized resistance R_{TH} is

$$R_{TH} = R_1 || R_2 = 4k || 2k = 1.33 k\Omega,$$

Then with β = 200,

$$I_E = I_C = I_{cQ} = \frac{2 - 0.7}{1.3 \times 10^3 + 0.006 \times 10^3}$$

or $I_{cQ} = 0.995 \, mA$

Further, summation of voltage in the collector circuit under the condition

$$\begin{split} I_{C} &= I_{E} \text{ leads to,} \\ V_{CC} &= I_{C} (R_{C} + R_{E}) + V_{CE} \\ \text{Or, } V_{CE} &= V_{CEQ} = V_{CC} - I_{C} (R_{C} + R_{E}) \\ &= 6V - 0.995 \text{ mA} (1k + 1.3k) \\ \text{Or } V_{CEQ} &= 3.71V \end{split}$$

Inference:

The circuit is highly stable as the change in collector current is 0.995 - 0.99 = 0.005 mA only (change is $\approx 0.5\%$) which is negligible. Similarly V_{CE} changes only 0.3% which is also negligible when β changes by 100% i.e from 100 to 200.

(2.7) Calculate the value of resistor R_B in the circuit shown to put V_{CE} at 3.0V (V_{BE} = 0.7V and β = 80)

Summation of voltages in the base-emitter circuit gives,

 $R_B I_B + V_{BE} + R_E I_E = V_{CC}$

Now, $V_{\text{BE}}\,$ = 0.7 V, and I_{C} = $I_{\text{E}}.$

Also,
$$I_B = \frac{I_C}{\beta} = \frac{I_C}{80}$$

Substituting these in above equation, and taking resistances in $k\Omega$,

$$R_{B} \cdot \frac{I_{C}}{80} + 3k \times I_{C} = V_{CC} - V_{BE}$$

= 9-0.7 = 8.3
or $R_{B} \cdot \frac{I_{C}}{80} + 3k \cdot I_{C} = 8.3$ -----(A)

Summation of voltages in the collector circuit results in,

$$I_{C}R_{C} + V_{CE} + I_{E} X 3k = 9V$$

or $I_{C} X 2k + 3.0V + I_{C} X 3k = 9V$
or $I_{C} (2k + 3k) = 9 - 3 = 6V$
or $I_{C} = \frac{6V}{5k} = 1.2mA$

Substituting the value of I_C in eqn (A)

$$R_{B} \cdot \frac{1.2}{80} + 3k \times 1.2 \, mA = 8.3V$$

or $R_{B} = \frac{4.7}{0.015 \, mA} = 313.3k$
 $R_{B} \approx 313k$