Module 2

Unit 2

TRANSISTOR (BJT)

Review Questions

1 Define current gains α and β. How are they related?
2 In transistor design, the base has most critical features as compared to emitter and collector. Discuss.
3 Why do we bias a transistor? What are the considerations in choosing an appropriate biasing scheme?
4 Draw I - V characteristics (Collector characteristics) for a transistor and discuss the salient features.
5 Explain 'base width modulation' and its influence on transistor characteristics.
6 What is collector feedback bias? How does this biasing provide stability to the circuit?
7 Give reasons for the wide use of 'voltage divider bias' in BJT amplifiers.
8 Discuss the flow of three currents $\mathrm{I}_{\mathrm{E}}, \mathrm{I}_{\mathrm{B}}$ and I_{C} in a forward biased emitter junction and reverse biased collectior junction.

Problems

2.1 A transistor has current gain of 0.99 when used in common base (CB) configuration. How much will be the current gain of this transistor in common emitter (CE) configuration?

Solution :- The current gain in common base circuit is written as α, and it has been given equal to 0.99 .
α and current gain in common emitter configuration β are related as

$$
\beta=\frac{\alpha}{1-\alpha}
$$

Therefore,

$$
\begin{aligned}
& \beta=\frac{0.99}{1-0.99}=99 \\
& \text { or } \beta=99
\end{aligned}
$$

2.2 Determine the minimum value of current gain β required to put the transistor in saturation when
$\mathrm{V}_{\text {in }}=+5 \mathrm{~V}$.
Assume, $\mathrm{V}_{\mathrm{BE}(\text { sat })}=0.8 \mathrm{~V}$,
$V_{C E(\text { sat })}=0.12 \mathrm{~V}$

Solution:- Let I_{B} and I_{C} be base current and collector current respectively (see fig. above).

Taking +5 V as input voltage $\mathrm{V}_{\text {in }}$, the summation of voltages (Kirchhoff's voltage law, KVL) in the base-emitter loop gives
$8 \times 10^{3} X I_{B}+V_{B E}-5 V=0$
We assume that the transistor is in saturation, so that
$\mathrm{V}_{\mathrm{BE}}=\mathrm{V}_{\mathrm{BE}(\mathrm{Sat})}=0.8 \mathrm{~V}$

Therefore ,
$80 \times 10^{3} \times \mathrm{I}_{\mathrm{B}}+0.8 \mathrm{~V}-5 \mathrm{~V}=0$
or, $I_{B}=\frac{4.2 \mathrm{~V}}{80 \times 10^{3}}=0.0525 \mathrm{~mA}$
Summation of voltages in the collector loop gives,
$5 \times 10^{3} \times I_{C}+V_{C E}=12 \mathrm{~V}$
or $I_{C}=\frac{12-0.2}{5 \times 10^{3}}=2.36 \mathrm{~mA}$

And the condition for the transistor in saturation is that the minimum value of gain β, $\beta_{\text {min }}=I_{C} / I_{B}=\frac{2.36 \mathrm{~mA}}{0.525 \mathrm{~mA}} \approx 45$,
or $\beta_{\text {min }}=45$.
2.3 The fixed bias circuit shown in figure uses a silicon transistor with $\mathrm{V}_{\mathrm{BE}}=0.7 \mathrm{~V}$.
(a) Find the collector current, I_{C}, and voltage V_{CE}, if β of transistor is 60.
(b) Find I_{C} and $V_{C E}$ if β changes to 80 .

What conclusions may be drawn?

$$
+V_{c c}(9 \mathrm{~V})
$$

Solution:-

(a) Summation of voltages in base-emitter loop results in
$V_{C C}=R_{B} I_{B}+V_{B E}$
or $I_{B}=\frac{V_{C C}-V_{B E}}{R_{B}}=\frac{9-0.7}{60 \times 10^{3}}=0.138 \mathrm{~mA}$
and,

$$
\begin{aligned}
\mathrm{I}_{\mathrm{C}}= & \beta \mathrm{I}_{\mathrm{B}} \\
& =60 \times 0.138 \mathrm{~mA}
\end{aligned}
$$

$\mathrm{I}_{\mathrm{C}}=8.28 \mathrm{~mA}$
Summation of voltages in the collector circuit gives,
$\mathrm{R}_{\mathrm{C}} \mathrm{l}_{\mathrm{C}}+\mathrm{V}_{\mathrm{CE}}=\mathrm{V}_{\mathrm{CC}}$
Or $V_{C E}=V_{C C}-I_{C} R_{C}$

$$
\begin{aligned}
& =9-8.28 \times 10^{-3} \times 0.5 \times 10^{3} \\
& =9-4.14
\end{aligned}
$$

Or $\mathrm{V}_{\mathrm{CE}}=4.86 \mathrm{~V}$
Thus the operating point values are
$\mathrm{I}_{\mathrm{C}}=8.28 \mathrm{~mA}$, and
$\mathrm{V}_{\mathrm{CE}}=4.86 \mathrm{~V}$
(b) Proceeding in the same way, and if the current gain β equals 80 , then Since $I_{B}=0.138 \mathrm{~mA}$, therefore
$I_{C}=\beta I_{B}=80 \times 0.138 \mathrm{~mA}$
or $\mathrm{I}_{\mathrm{C}}=12.42 \mathrm{~mA}$

$$
\begin{aligned}
& \begin{array}{l}
\text { And } \begin{aligned}
V_{C E} & =V_{C C}-I_{C} R_{C} \\
& =9-12.42 \times 10^{-3} \times 0.5 \times 10^{3} \\
& =9-6.21
\end{aligned} \\
V_{C E}=2.79 \mathrm{~V}
\end{array} \\
& \text { With } \beta=80 \text {, the operating point values are : } \\
& \mathrm{I}_{\mathrm{C}}=12,42 \mathrm{~mA} \text {, and } \\
& \mathrm{V}_{\mathrm{CE}}=2.79 \mathrm{~V}
\end{aligned}
$$

CONCLUSIONS:-

Changes in collector current I_{C} when β changes from 60 to 80 are from 8.28 mA to 12.42 mA .

And V_{CE} changes from 4.86 V to 2.79 V .
These changes are drastic and operation may shift to regions to give distorted output.
2.4 Find out the operating point current $I_{C Q}$, and voltage $V_{\text {CEQ }}$ in the circuit shown. $\left(\mathrm{V}_{\mathrm{BE}}=0.7 \mathrm{~V}, \beta\right.$ of transistor is 200).

$$
+9 \mathrm{~V}\left(\mathrm{~V}_{\mathrm{Cc}}\right)
$$

Solution:-

Considering the potential difference across the resistor R_{E}, the emitter current $\mathrm{I}_{\mathrm{E}}\left(\approx I_{C}\right)$ may be written as,
$I_{E} \approx I_{C}=\frac{V_{E E}-V_{B E}}{R_{E}}=\frac{9-0.7}{4.3 \times 10^{3}}$
or $\mathrm{I}_{\mathrm{C}}=\mathrm{I}_{\mathrm{CQ}}=1.93 \mathrm{~mA}$
Voltage summation in the collector circuit leads to,

$$
\begin{aligned}
& V_{C C}=R_{C} I_{C}+V_{C E} \\
& \text { or } \begin{aligned}
V_{C E} & =V_{C C}-R_{C} I_{C} \\
& =9-2.5 \times 10^{3} \times 1.93 \times 10^{-3} \\
& =9-4.83
\end{aligned}
\end{aligned}
$$

or $V_{\text {CE }}=V_{\text {CEQ }}=4.17 \mathrm{~V}$
2.5 Calculate the approximate value for the base resistor R_{B} which will forward bias the emitter junction of silicon transistor ($\beta=100$) in the circuit. Collectior - emitter voltage $V_{\text {CE }}$ of 2.5 V reverse biases the collector.
$\left(\mathrm{V}_{\mathrm{BE}}=0.7 \mathrm{~V}\right)$

$$
+5 \mathrm{~V}
$$

Solution:-

We assume that the emitter junction is in forward bias and $\mathrm{V}_{\mathrm{BE}}=0.7 \mathrm{~V}$.
Summation of voltages in the base-emitter circuit results in,
$R_{B} I_{B}+V_{B E}+R_{E} I_{E}=V_{C C}$
Since $\mathrm{I}_{\mathrm{C}}=\mathrm{I}_{\mathrm{E}}$,
and βI_{B} or $I_{B}=\frac{I_{C}}{\beta}=\frac{I_{E}}{\beta}$
Then above equation yields,
$R_{B} \cdot \frac{I_{E}}{\beta}+V_{B E}+R_{E} I_{E}=V_{C C}$
$\operatorname{or} I_{E}\left(\frac{R_{B}}{\beta}+R_{E}\right)=V_{C C}-V_{B E}=5.0-0.7$
$\operatorname{or} I_{E}\left(\frac{R_{B}}{\beta}+R_{E}\right)=4.3$
Now, summation of voltages in the collector - emitter circuit gives,
$R_{C} l_{C}+V_{C E}+R_{E} l_{E}=V_{C C}$
Because $\mathrm{I}_{\mathrm{C}}=\mathrm{I}_{\mathrm{E}}$
And substituting for other parameters
$\mathrm{I}_{E}\left(\mathrm{R}_{\mathrm{C}}+\mathrm{R}_{\mathrm{E}}\right)=\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{CE}}=5.0-2.5=2.5$
or $I_{E}=\frac{2.5}{\left(R_{C}+R_{E}\right)}=\frac{2.5}{(1.5+1) \times 10^{3}}=1 \mathrm{~mA}$
Substituting $\mathrm{I}_{\mathrm{E}}=1 \mathrm{~mA}$ in $\mathrm{eq}^{\mathrm{n}}(\mathrm{A})$
$1 \times 10^{-3}\left(\frac{R_{B}}{100}+1 \times 10^{3}\right)=4.3$
$R_{B}=330 \times 103 \Omega$
or $R_{B}=330 \mathrm{k} \Omega$
2.6 The operating point values of current $\mathrm{I}_{\mathrm{C}}\left(=\mathrm{I}_{\mathrm{CQ}}\right)$ and voltage $\mathrm{V}_{\mathrm{CE}}\left(=\mathrm{V}_{\mathrm{CEQ}}\right)$ in the circuit have magnitudes of 0.9 mA and 3.72 V respectively when the current gain β for the transistor is 100 . The transistor in the circuit is replaced by another one with $\beta=200$. Calculate the new values of I_{CQ} and $\mathrm{V}_{\text {CEQ }}$. What do you infer?

Solution:-

Thevenized voltage $V_{\text {th }}$ across R_{2} is

$$
\begin{aligned}
V_{T H} & =\frac{2 \times 10^{3}}{2 \times 10^{3}+4 \times 10^{3}} \times V_{C C} \\
& =\frac{2}{6} \times 6 \\
& =2 \mathrm{~V}
\end{aligned}
$$

That is $\mathrm{V}_{\mathrm{TH}}=2 \mathrm{~V}$
And, as we have derived the relation earlier,

$$
I_{E}=I_{C Q}=\frac{V_{T H}-V_{B E}}{R_{E}+R_{T H / \beta}}
$$

Where Thevenized resistance $\mathrm{R}_{\text {TH }}$ is
$R_{T H}=R_{1}| | R_{2}=4 k| | 2 k=1.33 \mathrm{k} \Omega$,
Then with $\beta=200$,
$I_{E}=I_{C}=I_{c Q}=\frac{2-0.7}{1.3 \times 10^{3}+0.006 \times 10^{3}}$
or $I_{C Q}=0.995 \mathrm{~mA}$

Further, summation of voltage in the collector circuit under the condition $I_{C}=I_{E}$ leads to,
$V_{C C}=I_{C}\left(R_{C}+R_{E}\right)+V_{C E}$
Or, $\mathrm{V}_{\mathrm{CE}}=\mathrm{V}_{\mathrm{CEQ}}=\mathrm{V}_{\mathrm{CC}}-\mathrm{I}_{\mathrm{C}}\left(\mathrm{R}_{\mathrm{C}}+\mathrm{R}_{\mathrm{E}}\right)$

$$
=6 \mathrm{~V}-0.995 \mathrm{~mA}(1 \mathrm{k}+1.3 \mathrm{k})
$$

Or $\mathrm{V}_{\text {CEQ }}=3.71 \mathrm{~V}$

Inference:
The circuit is highly stable as the change in collector current is $0.995-0.99=0.005 \mathrm{~mA}$ only (change is $\approx 0.5 \%$) which is negligible. Similarly $\mathrm{V}_{\text {CE }}$ changes only 0.3% which is also negligible when β changes by 100% i.e from 100 to 200.
(2.7) Calculate the value of resistor R_{B} in the circuit shown to put $V_{C E}$ at 3.0 V $\left(\mathrm{V}_{\mathrm{BE}}=0.7 \mathrm{~V}\right.$ and $\left.\beta=80\right)$
$+9 \mathrm{~V}$

Solution:-

Summation of voltages in the base-emitter circuit gives,
$R_{B} I_{B}+V_{B E}+R_{E} I_{E}=V_{C C}$
Now, $\mathrm{V}_{\mathrm{BE}}=0.7 \mathrm{~V}$, and $\mathrm{I}_{\mathrm{C}}=\mathrm{I}_{\mathrm{E}}$.
Also, $I_{B}=\frac{I_{C}}{\beta}=\frac{I_{C}}{80}$
Substituting these in above equation, and taking resistances in $\mathrm{k} \Omega$,

$$
\begin{aligned}
R_{B} \cdot \frac{I_{C}}{80}+3 k \times I_{C} & =V_{C C}-V_{B E} \\
& =9-0.7=8.3
\end{aligned}
$$

or $R_{B} \cdot \frac{I_{C}}{80}+3 k \cdot I_{C}=8.3----------(A)$
Summation of voltages in the collector circuit results in,
$I_{C} R_{C}+V_{C E}+I_{E} X 3 k=9 V$
or $\mathrm{I}_{\mathrm{C}} \mathrm{X} 2 \mathrm{k}+3.0 \mathrm{~V}+\mathrm{I}_{\mathrm{C}} \mathrm{X} 3 \mathrm{k}=9 \mathrm{~V}$
or $\mathrm{I}_{\mathrm{C}}(2 \mathrm{k}+3 \mathrm{k})=9-3=6 \mathrm{~V}$
or $I_{C}=\frac{6 \mathrm{~V}}{5 k}=1.2 \mathrm{~mA}$
Substituting the value of I_{C} in eqn (A)
$R_{B} \cdot \frac{1.2}{80}+3 k \times 1.2 \mathrm{~mA}=8.3 \mathrm{~V}$
or $R_{B}=\frac{4.7}{0.015 \mathrm{~mA}}=313.3 \mathrm{k}$
$R_{B} \approx 313 k$

