Introduction to Physics of Nanoparticles and Nano structures

Part I: Physics of Nanoparticles

Questions on Module 2

- 1. Consider the phenomena of reflection and refraction of plane waves incident on planar interface between two dielectrics.
 - (a) Derive *Fresnel's* law of reflection and refraction for *S*-polarized and *P*-polarized plane waves for general angle of incidence.
 - (b) What is Brewster's angle? Show that if the angle of incidence exceeds Brewster's angle, then an incident plane wave becomes polarized on reflection.
 - (c) Describe the condition for total internal reflection and Goos-Hänchen effect.
- 2. Consider reflection and refraction of a plane wave of wavelength λ (in vacuo) incident normally on a dielectric slab of thickness d and homogeneous and isotropic refractive index $N_1 = n_1 + ik_1$, placed in a non-absorbing medium of homogeneous and isotropic refractive index $N_2 = n_2$.
 - (a) Show that the *Reflectance* R_{slab} for the slab is given by

$$R_{slab} = R \frac{1 + e^{-2u} - 2e^{-u}\cos 2\psi}{1 + R^2 e^{-2u} - 2Re^{-u}\cos[2(\psi + \phi)]}$$

where $u = 4\pi k_1 d/\lambda$, $\psi = 2\pi n_1 d/\lambda$, $\phi = \tan^{-1}[2k_1n_2/(n_1^2 + k_1^2 - n_2^2)]$, and

 $R = \frac{(n_2 - n_1)^2 + k_1^2}{(n_2 + n_1)^2 + k_1^2}, \quad (\text{Recflectance at normal incidence for the slab material}).$

(b) Show that the *Transmittance* T_{slab} for the slab is given by

$$T_{slab} = \frac{1 + R^2 - 2R\cos 2\phi}{e^u + R^2 e^{-u} - 2R\cos[2(\psi + \phi)]}$$

where u, ψ, ϕ and R are as defined earlier.

- (c) Find the approximate separation between two successive maxima in the ripple structure appearing in the *Optical density* ($\equiv \log_{10}(T_{slab}^{-1})$) as a function of λ^{-1} , if $d = 10\mu m$, $n_1 = 2.5$, at wavelength $\lambda \approx 500nm$.
- (d) If $k_1 \ll 1$ and in addition, $d \ll \lambda$, then find their averages of R_{slab} and T_{slab} over the fine ripple structures, where the averages are defined as

$$R_{slab}^{avg} = \frac{1}{\pi} \int_0^{\pi} d\psi R_{slab}(\psi), \quad \text{and} \quad T_{slab}^{avg} = \frac{1}{\pi} \int_0^{\pi} d\psi T_{slab}(\psi).$$

Use the standard integral

$$\frac{1}{2\pi} \int_0^{2\pi} \frac{d\theta}{\alpha - \cos \theta} = \frac{1}{\sqrt{\alpha^2 - 1}}, \ |\alpha| > 1.$$

*** END ***