Module 1

Thermodynamics and defects in solids

Concept of free energy, enthalpy and entropy

Gibb's free energy, G can be expressed as G = H-TS

H – enthalpy (J/mol), T – temperature in K, S – entropy (J/mol.K)

➢ Further H= E+PV

E – Internal energy (J/mol), P – Pressure (N/m²), V – Volume (m³/mol)

> In the solid state, the term PV is in general very small (in the temperature and pressure range we consider) and can be neglected.

> To illustrate further at atmospheric pressure $1.01x \ 10^6 \ \text{N/m^2}$, the typical molar volume of most of the metals could be in the range of $6x \ 10^{-6} - 10 \ x10^{-6} \ \text{m^3/mol}$. If we take the higher side, PV term gives around $10.1 \ \text{J/mol}$.

 \succ On the other hand, internal energy of metals is in the order of kJ/mol. So PV term is less than even 1%.

>Internal energy has two components:

Potential energy, which depends on atomic bonds and

Kinetic energy, which depends on the vibration of atoms at their lattice position

> The relation can be rewritten as H = G + TS

H measures the total energy of the body

TS measures the useless energy that is the energy which can't be spent for any work or transformation.

> So the Gibb's free energy is defined as the energy that can be "set free" at a particular pressure to do the work or make a particular transformation possible

> Similarly at a particular volume the free energy is called Helmoltz free energy, F, expressed as

F = E - TS

> We shall consider the Gibb's free energy since we are going to consider the transformations under constant pressure.

> To determine Gibb's free energy, we need to determine enthalpy and entropy of the system.

Relation between enthalpy and specific heat

> Let us first consider a single component system.

 \succ If we keep the system isolated and do not allow it to interact with the surroundings, the internal energy of the system will not change.

> This is actually a closed system.

 \succ However, if the system is allowed to interact with the surroundings (that is if it acts as a open system) internal energy might change.

> Suppose the system does work δW in the surroundings and takes heat δQ from the system, then according to the *first law of thermodynamics*, the change in internal energy of the system is

$$dE = \delta Q - \delta W \tag{1}$$

 \succ So after spending some energy for work, rest of the energy is added to the system to increase the internal energy.

> Here exact differential is used for energy because it does not depend on the path and function of the state only.

 \succ On the other hand heat and work depend on the path.

If a system changes its volume by dV at a constant pressure P, the work can be expressed as

dW = PdV

So Eq. 1 can be written as dE = dQ - PdV

(2)

Further we know

H = E + PV dH = dE + PdV + VdPdH = dQ + VdP

If we divide by dT, we get

$$\frac{dH}{dT} = \frac{\delta Q}{dT} + V \frac{dP}{dT}$$

Specific heat capacity, C_p at a constant pressure is defined as the heat required to increase the temperature of the system by one degree. So it can be expressed as $(\mathcal{S}O) = (\mathcal{A}H)$

$$C_P = \left(\frac{\delta Q}{dT}\right)_P = \left(\frac{dH}{dT}\right)_P$$
 since dP = 0

> After integration, we can write

$$\int_{H_o}^{H} dH = \int_{o}^{T} C_P dT$$
$$H_T = H_o + \int_{o}^{T} C_P dT$$

$$H_{T} = \Delta H_{298} + \int_{298}^{T} C_{P} dT$$

 $\succ H_{\rm T},~H_{\rm o}$ and ΔH_{298} are the enthalpies at temperature, T, 0 and 298 K respectively.

> Note that we cannot measure the absolute thermodynamic values.

> We rather measure a relative value. H_{298} is considered as reference value.

> For pure elements it is considered as zero.

Relation between entropy and specific heat

> As explained before, the knowledge on entropy (which cannot be spent to do a work) is required to determine how much energy is available (free energy) in a system to do useful work from the total heat content or enthalpy.

> Second law of thermodynamics states that the entropy of a system will either remain the same or try to increase.

> When system moves from one equilibrium state 1 to another equilibrium state 2 by changing heat of δQ , the entropy S in a reversible process can be defined as

$$S_2 - S_1 = \int_1^2 \frac{\delta Q}{T}$$

> The value at zero Kelvin is zero and considered as the reference state for entropy, so that the entropy at any temperature T can be expressed as

$$S_T = \int_0^T \frac{\delta Q}{T}$$

 \succ Previously we have seen from the relation H = E+PV and using the first law of thermodynamics

$$\delta Q = dH$$

> Previously we have seen that $dH = C_P dT$

> So the entropy at T can be expressed as

$$S_T = \int_o^T \frac{C_P}{T} dT$$

> Sometimes value of the entropy at the standard state (298 K) is available and can written as $_{T}$

$$S_{T} = \Delta S_{298} + \int_{298}^{T} \frac{C_{P}}{T} dT$$

> So the free energy at temperature, T can be determined

$$\begin{aligned} G_T &= H_T - TS_T \\ G_T &= \Delta H_{298} + \int_{298}^T C_P dT - T \bigg(\Delta S_{298} + \int_{298}^T \frac{C_P}{T} dT \bigg) \\ G_T &= \int_{298}^T C_P dT - T \bigg(\Delta S_{298} + \int_{298}^T \frac{C_P}{T} dT \bigg) \\ \end{aligned}$$
 In pure elements

> Specific heat is expressed as

$$C_p = A + BT - \frac{C}{T^2}$$

 \succ A, B and C are constants.

> Specific heat changes with temperature as shown in the figure

- > Specific heat is expressed in terms of empirical formula as expressed above.
- \succ In general the constant values are available in the data book.

> So the free energy at temperature, T can be determined

$$\begin{aligned} G_{T} &= \int_{298}^{T} \left(A + BT - \frac{C}{T^{2}} \right) dT - T \left(\Delta S_{298} + \int_{298}^{T} \frac{A + BT - \frac{C}{T^{2}}}{T} dT \right) \\ &= AT + \frac{B}{2}T^{2} + C\frac{1}{T} \Big|_{298}^{T} - T \left[\Delta S_{298} + \left(A \ln T + BT + \frac{C}{2T^{2}} \Big|_{298}^{T} \right) \right] \end{aligned}$$

➢ From the known values, one can determine G at different temperatures and then plot the variation of G with T.