Module 4 and 5 Linear and Nonlinear Dielectric Ceramics

1. Plot the dielectric constant and loss vs frequency for two materials: Ge and ZrO_{2}. Briefly explain the reasons for each region in each material.
2. A 2 cm diameter and 0.25 mm thick disk of steatite was measured and found to have a capacitance of $7.2 \mu \mathrm{~F}$ and a dissipation factor of 72 . Determine the following properties:
a. Permittivity of dielectric
b. Electric loss factor
c. Electrical susceptibility
3. Si has an atomic radii of 110 pm . What type of mechanisms you expect in Si to contribute to its dielectric constant contribution? Calculate the dielectric constant of Si using appropriate expression. Observed value is about 11-12. Compare and comment on the difference, if any, and any reasons for such behavior.
4. A 0.5 cm thick dielectric material has a dielectric constant of 75 and loss tangent of 20 . If the materials if used at 100 Hz and 1000 V , calculate the power loss density in the dielectric.
5. Following are two electrical circuits (series R-C and parallel R-C). Attempt the following:

a. Derive the expressions of the impedance and admittance of both circuits.
b. Derive the expressions of the real and imaginary dielectric constant and loss tangent.
c. Plot these quantities as a function of frequency.
d. Under what conditions, would the Debye equations look similar to obtained from (b). What would be the physical meaning?
6. Plot the free energy-displacement and susceptibility vs temperature plots for ferroelectric Barium Titanate and schematically show the behavior across its Curie temperature.
7. Piezoelectric ZnS upon application of stress becomes non-centrosymmetric. Its (001) plan view is shown in the figure below. This crystal is subject to the equilibrium arrangement of shear stresses τ acting such that tensile stresses are along [110] and [$\overline{1} \overline{1} 0]$ directions and compressive stresses of equal magnitude are along [$1 \overline{1} 0$] and [$\overline{1} 10$] directions. Answer the following:

a. With the help of arrows, sketch on the same figure the resulting movement of S atoms keeping the Zn atoms fixed. S atoms form the coordination tetrahedra around Zn atoms located at $1 / 41 / 41 / 4$. Have the coordinates of the centre of mass (and thus centre of charge) of S atoms changed?
b. In what direction, must the Zn atom move to remain equidistant from the coordinating S atoms? Would it still be at the centre of charge of the S atoms?
c. If the $\mathrm{Zn}-\mathrm{S}$ bond is ionic, or partially ionic, in what direction will the dipole moment develop?
d. At the charge-centre of a tetrahedron of S atoms around Zn in the unstressed crystal, what charge due to S must appear? Express the value in terms of charge of one S atom $(-q)$.
e. Experimental evidence shows relatively large covalent character of $\mathrm{Zn}-\mathrm{S}$ bonds in ZnS structures modifies the the magnitude of the charge on each S and Zn 'ion' to $|\mathrm{q}| \approx 0.26$.e where e denotes the electronic charge. Experimentally the displacement (Δl) of the Zn ion from the centre of the tetrahedron is 75 fm when $\tau=25 \mathrm{MPa}$. Calculate the electric polarization, P and piezoelectric coefficient, d?
