Module-15

Thermal properties

Contents

- 1) Heat capacity
- 2) Thermal expansion
- 3) Thermal conductivity
- 4) Thermal stresses

Introduction

- Engineering materials are important in everyday life because of their versatile structural properties.
- Other than these properties, they do play an important role because of their physical properties.
- Prime physical properties of materials include: electrical properties; thermal properties; magnetic properties; and optical properties.
- ➤ The thermal properties of engineering materials are diverse, and so are their uses in different applications.

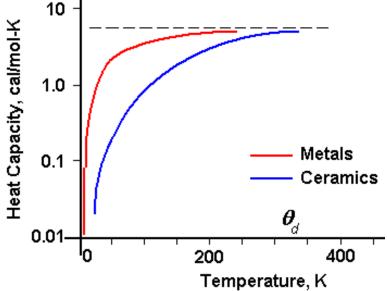
Heat capacity

- ➤ A solid material's potential energy is stored as its heat energy.
- > Temperature of a solid is a measure its potential energy.
- External energy required to increase temperature of a solid mass is known as the material's *heat capacity*. it is defined as its ability to absorb heat energy.

$$C = \frac{dQ}{dT}$$

- ➢ Heat capacity has units as J/mol-K or Cal/mol-K.
- Heat capacity is not an intrinsic property i.e. it changes with material volume/mass.

Specific heat


- ➢ For comparison of different materials, heat capacity has been rationalized.
- Specific heat is heat capacity per unit mass. It has units as J/kg-K or Cal/kg-K.
- ➢ With increase of heat energy, dimensional changes may occur. Hence, two heat capacities are usually defined.
- → Heat capacity at constant pressure, C_p , is always higher than heat capacity at constant volume, C_v .
- $\succ C_p$ is ONLY marginally higher than C_v .
- Heat is absorbed through different mechanisms: lattice vibrations and electronic contribution.

Heat capacity

➤ At low temperatures, vibrational heat contribution of heat capacity varies with temperature as follows:

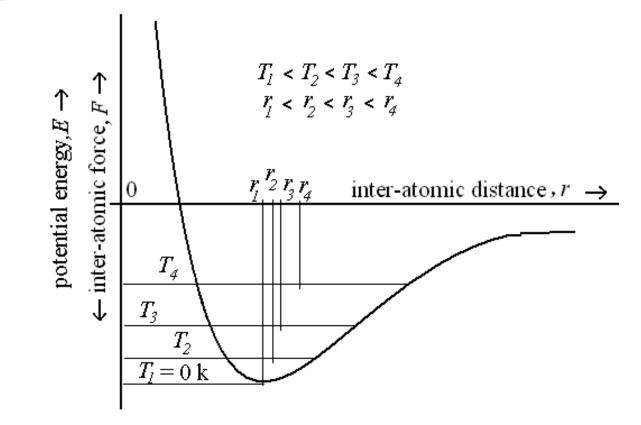
 $C_v = AT^3$

The above relation is not valid above a specific temperature known as *Debye temperature*. The saturation value is approximately equal to 3R.

Thermal expansion

- > Increase in temperature may cause dimensional changes.
- > Linear *coefficient of thermal expansion* (α) defined as the change in the dimensions of the material per unit length.

$$\alpha = \frac{l_f - l_0}{l_0 (T_f - T_0)} = \frac{\Delta l}{l_0 \Delta T} = \frac{\varepsilon}{\Delta T}$$


 $\succ \alpha$ has units as (°C)⁻¹.

 $\succ \alpha$ values:

for metals	5-25x10 ⁻⁶
for ceramics	0.5-15x10 ⁻⁶
for polymers	50-400x10 ⁻⁶

Thermal expansion (contd...)

Changes in dimensions with temperature are due to change in inter-atomic distance, rather than increase in vibrational amplitude.

Thermal shock

- If the dimensional changes in a material are not uniform, that may lead to fracture of brittle materials like ceramics. It is known as *thermal shock*.
- ➤ The capacity of a material to withstand thermal shock is defined as *thermal shock resistance*, TRS.

$$TSR \cong \frac{\sigma_f k}{E\alpha}$$

Thermal shock behavior is affected by several factors: thermal expansion coefficient – a low value is desired; thermal conductivity – a high value is desired; elastic modulus – low value is desired; fracture strength – high value is desired; phase transformations.

Thermal shock (contd...)

- Thermal shock may be prevented by altering external conditions to the degree that cooling or heating rates are reduced and temperature gradients across the material are minimized.
- Thermal shock is usually not a problem in most metals because metals normally have sufficient ductility to permit deformation rather than fracture.
- However, it is more of a problem in ceramics and glass materials. It is often necessary to remove thermal stresses in ceramics to improve their mechanical strength. This is usually accomplished by an annealing treatment.

Thermal conductivity

- Thermal conductivity is ability of a material to transport heat energy through it from high temperature region to low temperature region.
- > Heat energy transported through a body with thermal conductivity k is

$$Q = kA \frac{\Delta T}{\Delta l}$$

- \succ It is a microstructure sensitive property.
- ≻ It has units as W/m.K.
- Its value range for metals 20-400
 for ceramics 2-50
 for polymers order of 0.3

Mechanisms - Thermal conductivity

- Heat is transported in two ways electronic contribution, vibratioanl (phonon) contribution.
- ➢ In metals, electronic contribution is very high. Thus metals have higher thermal conductivities. It is same as electrical conduction. Both conductivities are related through Wiedemann-Franz law: k = -I

$$\frac{\kappa}{\sigma T} = L$$

where L – Lorentz constant $(5.5 \times 10^{-9} \text{ cal.ohm/sec.K}^2)$

➤ As different contributions to conduction varies with temperature, the above relation is valid to a limited extension for many metals.

Mechanisms - Thermal conductivity (contd...)

- With increase in temperature, both number of carrier electrons and contribution of lattice vibrations increase.
 Thus thermal conductivity of a metal is expected to increase.
- However, because of greater lattice vibrations, electron mobility decreases.
- The combined effect of these factors leads to very different behavior for different metals.

Eg.: thermal conductivity of iron initially decreases then increases slightly; thermal conductivity decreases with increase in temperature for aluminium; while it increases for platinum

Thermal stresses

Stresses due to change in temperature or due to temperature gradient are termed as *thermal stresses*.

 $\sigma_{\rm thermal} = \alpha E \Delta T$

- Thermal stresses in a constrained body will be of compressive nature if it is heated, and vice versa.
- Engineering materials can be tailored using multi-phase constituents so that the overall material can show a zero thermal expansion coefficient.

Eg.: Zerodur – a glass-ceramic material that consists of 70-80% crystalline quartz, and the remaining as glassy phase. Sodium-zirconium-phosphate (NZP) have a near-zero thermal expansion coefficient.