Material Science

Prof. Satish V. Kailas

Associate Professor
Dept. of Mechanical Engineering,
Indian Institute of Science,
Bangalore – 560012
India

Chapter 6. Phase Diagrams

Highlights, Motivation and Critical Concepts:

Materials can exist in different or phases. During processing, material can change its microstructure, compositions and might be able to co-exist with different phases. The equilibrium conditions can be tailored according to the need of the hour. Co-existence of different phases under equilibrium conditions can be depicted using phase diagrams. This gives an understanding of microstructures obtainable, and thus the mechanical properties of product phases. Hence, it is necessary to be able to construct, interpret and use phase diagrams in processing of materials. Interpretation of phase diagrams involves identifying phases present, their composition and their relative amount under given conditions. An interesting part of phase diagrams is location of different invariant reactions, and their influence on cooling curve passing through the region of it. This can be done using phase rule, lever rule along with a tie-line constructed. This chapter is devoted to the above said task. Classification of different systems according to number of component present is explained. It is followed by detailed study of various binary systems. Along with general systems, an important binary system of Fe and C is dealt in details. This is because steels constitute greatest amount of metallic materials used by man, and solid state transformations that occur in steels are varied and interesting.

Multiple Choice Questions' Bank:

Wutupic Choice Ques	SHOIIS Dalik.			
1. Gibbs phase rule fo	or general system:			
(a) P+F=C-1	(b) P+F=C+1	(c) P+F=C-2	(d) P+F=C+2	
2. In a single-component condensed system, if degree of freedom is zero, maximum number of phases that can co-exist				
(a) 0	(b) 1	(c) 2	(d) 3	

3. The degree of freedom at triple point in unary diagram for water _____.

(a) 0	(b) 1	(c) 2	(d) 3	
4. Above the following line, liquid phase exist for all compositions in a phase diagram.				
(a) Tie-line	(b) Solvus	(c) Solidus	(d) Liquidus	
5. Following is wrong	g about a phase diagrar	n.		
(a) It gives information on transformation rates.(b) Relative amount of different phases can be found under given equilibrium conditions.(c) It indicates the temperature at which different phases start to melt.(d) Solid solubility limits are depicted by it.				
6. Not a Hume-Ruthe	ry condition:			
(b) Size of atoms of e(c) Elements should f		d solution must be the state to the state of		
7. Pick the odd one in	the following:			
(a) Isomorphous alloy (b) Terminal solid solution (c) Intermediate solid solution (d) Compound				
8. The boundary line between (liquid) and (liquid+solid) regions must be part of				
(a) Solvus	(b) Solidus	(c) Liquidus	(d) Tie-line	
9. The boundary line between (liquid+solid) and (solid) regions must be part of				
(a) Solvus	(b) Solidus	(c) Liquidus	(d) Tie-line	
10. The boundary line between (alpha) and (alpha+beta) regions must be part of				
(a) Solvus	(b) Solidus	(c) Liquidus	(d) Tie-line	
11. Horizontal arrest in a cooling curve represents:				
(a) Continuous coolin	g (b) Invariant r	reaction (c) Bo	th (d) None	
12. Relative amounts of phases in a region can be deduced using				
(a) Phase rule	(b) Lever rule	(c) Either	(d) None	
13. An invariant react	tion that produces a sol	lid up on cooling two l	iquids:	

(a) Eutectic	(b) Peritectic	(c) Monotectic	(d) Syntectic
14. A solid + a liqui	d result in a liquid up o	on heating during	reaction.
(a) Eutectic	(b) Peritectic	(c) Monotectic	(d) Syntectic
15. A solid + a liqui	d result in a solid up o	n cooling during	reaction.
(a) Eutectic	(b) Peritectic	(c) Monotectic	(d) Syntectic
16. On heating, one	solid phase results in a	nother solid phase plu	us on liquid phase during reaction.
(a) Eutectic	(b) Peritectic	(c) Monotectic	(d) Syntectic
17. A solid phase re	sults in a solid plus and	other solid phase up or	n cooling during reaction.
(a) Eutectoid	(b) Peritectoid	(c) Eutectic	(d) Peritectic
18. A solid phase re	sults in a solid plus and	other solid phase up or	n heating during reaction.
(a) Eutectoid	(b) Peritectoid	(c) Monotectoid	(d) None
19. A liquid phase p	produces two solid phase	ses during	reaction up on cooling.
(a) Eutectic	(b) Eutectoid	(c) Peritectic	(d) Peritectoid
20. Liquid phase is	involved in the followi	ng reaction:	
(a) Eutectoid	(b) Peritectoid	(c) Monotectoid	(d) None
21. Not a basic step	of precipitation streng	thening	
(a) Solutionizing	(b) Mixing and com	pacting (c) Quenchi	ng (d) Aging
22. Both nucleation	and growth require ch	ange in free energy to	be
(a) –ve	(b) zero	(c) +ve (d) A	Any
23. During homoger	neous nucleation, critic	cal size of a particle	with increase in under-cooling.
(a) Increases		(c) Won't change	

24. Not a typical site for nucleation during solid state transformation					
(a) Container wall	(b) Grain boundaries	(c) Stacking faults	(d) Dislocations		
25. Growth occurs by	25. Growth occurs by				
(a) Diffusion controlled individual movement of atoms(b) Diffusion-less collective movement of atoms(c) Both(d) None					
26. Overall transform	nation rate changes with	h temperature as follow	vs:		
 (a) Monotonically decreases with temperature (b) First increases, then decreases (c) Initially it is slow, and then picks-up (d) Monotonically increases with temperature 					
27. wt.% of carbon in mild steels					
(a) < 0.008	(b) 0.008-0.3	(c) 03-0.8	(d) 0.8-2.11		
28. Eutectic product	in Fe-C system is calle	d			
(a) Pearlite	(b) Bainite	(c) Ledeburite	(d) Spheroidite		
29. Eutectoid product in Fe-C system is called					
(a) Pearlite	(b) Bainite	(c) Ledeburite	(d) Spheroidite		
30. Phases that exist on left side of an invariant reaction line are called					
(a) Pro-phase	(b) Hypo-phase	(c) Hyper-phase	(d) None		
31. Alloying element that decreases eutectoid temperature in Fe-C system					
(a) Mo	(b) Si	(c) Ti	(d) Ni		
32. Nose of a C-curve represents					
(a) Shortest time required for specified fraction of transformation(b) Longest time required for specified fraction of transformation(c) Average time required for specified fraction of transformation(d) No information regarding time required for specified fraction of transformation					

33. Phase formed of diffusion-less reaction:

(a) Pearlite	(b) Lower Bainite	(c) Upper bainite	(d) Martensite
34. Ms for Fe-C syste	em is round °C.		
(a) 725	(b) 550	(c) 450	(d) 210
35. Impurity not respo	onsible for temper emb	prittlement	
(a) Sn	(b) Sb	(c) Si	(d) As
Answers:			
1. d 2. c 3. a 4. c 5. a 6. c 7. a 8. c 9. b 10. a 11. b 12. b 13. d 14. c 15. b 16. b 17. a 18. b 19. a 20. d 21. b 22. a 23. b 24. a 25. c 26. b 27. b 28. c 29. a 30. c 31. d 32. a 33. d 34. d 35. c			