


Convection
• Heat transfer in the presence of a fluid motion on a solid surface
•Various mechanisms at play in the fluid:

- advection 

 

physical transport of the fluid
- diffusion 

 

conduction in the fluid
- generation   

 

due to fluid friction
•But fluid directly in contact with the wall does not move relative to it; hence 
direct heat transport to the fluid is by conduction in the fluid only. 
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Convection
Free or natural convection 
(induced by buoyancy 
forces)

forced convection (driven 
externally)

May occur with 
phase change 
(boiling, 
condensation)

Convection

Typical values of h (W/m2K)

Free convection:         gases: 2 - 25

liquid:   50 - 100

Forced convection:     gases: 25 - 250

liquid:  50 - 20,000

Boiling/Condensation: 2500 -100,000

Heat transfer rate q = h( Ts -T 

 

)W 

h=heat transfer coefficient (W /m2K)

(h is not a property. It depends on 
geometry ,nature of flow, 
thermodynamics properties etc.)
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Convection rate equation

Main purpose of convective heat 
transfer analysis is to determine:

• flow field

• temperature field in fluid

• heat transfer coefficient, h

q’’=heat flux = h(Ts - T

 

)

q’’ = -k(T/ y)y=0

Hence, h = [-k(T/ y)y=0 ] / (Ts - T

 

)

The expression shows that in order to determine h, we 
must first determine the temperature distribution in the 
thin fluid layer that coats the wall.



• extremely diverse
• several parameters involved (fluid properties, geometry, nature of flow, 
phases etc)
• systematic approach required
• classify flows into certain types, based on certain parameters
• identify parameters governing the flow, and group them into meaningful 
non-dimensional numbers
• need to understand the physics behind each phenomenon

Classes of convective flows:

Common classifications:
A. Based on geometry:

External flow / Internal flow
B. Based on driving mechanism

Natural convection / forced convection / mixed convection
C. Based on number of phases

Single phase / multiple phase 
D.  Based on nature of flow

Laminar / turbulent



How to solve a convection problem ?
• Solve governing equations along with boundary conditions

• Governing equations include

1. conservation of mass

2. conservation of momentum

3. conservation of energy

• In Conduction problems, only (3) is needed to be solved. 
Hence, only few parameters are involved

• In Convection, all the governing equations need to be 
solved.

 large number of parameters can be involved



• Nusselt No.  Nu = hx / k = (convection heat transfer strength)/ 
(conduction heat transfer strength)

• Prandtl No. Pr = /
 

= (momentum diffusivity)/ (thermal diffusivity)

• Reynolds No. Re = U x / 
 

= (inertia force)/(viscous force)

Viscous force provides the dampening effect for disturbances in the 
fluid. If dampening is strong enough  laminar flow

Otherwise, instability  turbulent flow  critical Reynolds number



Laminar                            Turbulent



Forced convection: Non-dimensional groupings
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h=f(Fluid, Vel ,Distance,Temp)

•Fluid particle adjacent to the 
solid surface is at rest

•These particles act to retard the 
motion of adjoining layers

• boundary layer effect
Momentum balance: inertia forces, pressure gradient, viscous forces, 
body forces

Energy balance: convective flux, diffusive flux, heat generation, energy 
storage

FORCED CONVECTION: 
external flow (over flat plate)

An internal flow is surrounded by solid boundaries that can restrict the 
development of its boundary layer, for example, a pipe flow.  An external flow, on 
the other hand, are flows over bodies immersed in an unbounded fluid so that the 
flow boundary layer can grow freely in one direction.  Examples include the flows 
over airfoils, ship hulls, turbine blades, etc.



One of the most important concepts in understanding the external flows is the 
boundary layer development.  For simplicity, we are going to analyze a boundary 
layer flow over a flat plate with no curvature and no external pressure variation.
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Hydrodynamic boundary layer

Boundary layer definition
Boundary layer thickness (): defined as the distance away from the surface 
where the local velocity reaches to 99% of the free-stream velocity, that is  
u(y=)=0.99U

 

.  Somewhat an easy to understand but arbitrary definition.
Boundary layer is usually very thin: /x usually << 1.



Hydrodynamic and Thermal 
boundary layers

As we have seen earlier,the hydrodynamic boundary layer is a region of a 
fluid flow, near a solid surface, where the flow patterns are directly 
influenced by viscous drag from the surface wall.

0<u<U,     0<y<

The Thermal Boundary Layer is a region of a fluid flow, near a solid 
surface, where the fluid temperatures are directly influenced by heating or 
cooling from the surface wall.  

0<t<T,     0<y<t

The two boundary layers may be expected to have similar characteristics but 
do not normally coincide. Liquid metals tend to conduct heat from the wall 
easily and temperature changes are observed well outside the dynamic 
boundary layer.  Other materials tend to show velocity changes well outside 
the thermal layer.  



Effects of Prandtl number, Pr
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Boundary layer equations (laminar flow)
• Simpler than general equations because boundary layer is thin
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Exact solutions: Blasius
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Heat transfer coefficient

• Local heat transfer coefficient:
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• Average heat transfer coefficient:
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• Recall:    wallfrom rate flowheat  , TTAhq ww• Recall:    wallfrom rate flowheat  , TTAhq ww

• Film temperature, Tfilm

For heated or cooled surfaces, the thermophysical properties within 
the boundary layer should be selected based on the average 
temperature of the wall and the free stream;   TTT wfilm 2

1



Heat transfer coefficient

U

x Hydrodynamic 
Boundary Layer, 

Convection 
Coefficient, h.

Thermal Boundary 
Layer, t

Laminar Region                   Turbulent Region

Laminar and turbulent b.l.



Turbulent boundary layer
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• Boundary layer growth: 

 

x
• Initial growth is fast
• Growth rate d/dx 

 

1/x, 
decreasing downstream.
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• Wall shear stress: w 

 

1/x
• As the boundary layer grows, the 
wall shear stress decreases as the 
velocity gradient at the wall becomes 
less steep.

Laminar Boundary Layer Development



Determine the boundary layer thickness, the wall shear stress of a laminar water flow 
over a flat plate.  The free stream velocity is 1 m/s, the kinematic viscosity of the water 
is 10-6 m2/s.  The density of the water is 1,000 kg/m3.  The transition Reynolds number 
Re=Ux/=5105.  Determine the distance downstream of the leading edge when the 
boundary transitions to turbulent.  Determine the total frictional drag produced by the 
laminar and turbulent portions of the plate which is 1 m long. If the free stream and 
plate temperatures are 100 C and 25 C, respectively, determine the heat transfer rate 
from the plate.  
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( ) 5 5 10 ( ).

Therefore, for a 1m long plate, the boundary layer grows by 0.005(m),
or 5 mm, a very thin layer.
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The total frictional drag is equal to the integration of the wall shear stress:

0.664F (1) 0.332 0.939( )
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Define skin friction coefficient: C
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 laminar boundary layer.

Example (cont..)
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Forced convection over exterior bodies

• Much more complicated.
•Some boundary layer may exist, but it is likely 
to be curved and U

 
will not be constant.

• Boundary layer may also separate from the 
wall.
• Correlations based on experimental data can 
be used for flow and heat transfer calculations
• Reynolds number should now be based on a 
characteristic diameter. 

• If body is not circular, the equivalent 
diameter Dh is used
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• Thermal conditions
 Laminar or turbulent
 entrance flow and fully developed thermal condition

For laminar flows the thermal entrance length is a function of the 
Reynolds number and the Prandtl number: xfd,t /D 

 
0.05ReD Pr, 

where the Prandtl number is defined as Pr = /
 

and 
 

is the thermal 
diffusitivity.
For turbulent flow, xfd,t 

 
10D.

FORCED CONVECTION: Internal flow

Thermal entrance region, xfd,t

e.g.  pipe flow



Thermal Conditions

• For a fully developed pipe flow, the convection 
coefficient does not vary along the pipe length.  
(provided all thermal and flow properties are constant)

x

h(x)

xfd,t

constant

• Newton’s law of cooling: q”S = hA(TS -Tm )
Question: since the temperature inside a pipe flow does not remain 
constant, we should use a mean temperature Tm , which is defines 
as follows:



Energy Transfer

Consider the total thermal energy carried by the fluid as
(mass flux) (internal energy)v

A

VC TdA 
Now imagine this same amount of energy is carried by a body 
of fluid with the same mass flow rate but at a uniform mean 
temperature Tm .  Therefore Tm can be defined as

v
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
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Consider Tm as the reference temperature of the fluid so that the 
total heat transfer between the pipe and the fluid is governed by the 
Newton’s cooling law as: qs ”=h(Ts -Tm ), where h is the local 
convection coefficient, and Ts is the local surface temperature.  
Note: usually Tm is not a constant and it varies along the pipe 
depending on the condition of the heat transfer.



Energy Balance

Example: We would like to design a solar water heater that can heat up the 
water temperature from 20° C to 50° C at a water flow rate of 0.15 kg/s.  The 
water is flowing through a 0.05 m diameter pipe and is receiving a net solar 
radiation flux of 200 W/m of pipe length.  Determine the total pipe length 
required to achieve the goal.



Example (cont.)

Questions: (1) How to determine the heat transfer coefficient, h?

There are a total of six parameters involved in this problem: h, V, D, , kf , 
cp . The temperature dependence of properties is implicit and is only 
through the variation of thermal properties.  Density 

 

is included in the 
kinematic viscosity, .  According to the Buckingham theorem, it is 
possible for us to reduce the number of parameters by three.  Therefore, the 
convection coefficient relationship can be reduced to a function of only 
three variables:

Nu=hD/kf , Nusselt number, Re=VD/, Reynolds number, and 
Pr=, Prandtl number.  

This conclusion is consistent with empirical observation, that is 
Nu=f(Re, Pr). If we can determine the Reynolds and the Prandtl numbers, 
we can find the Nusselt number and hence, the heat transfer coefficient, h.



Convection Correlations

ln(Nu)

ln(Re)

slope m

Fixed Pr

ln(Nu)

ln(Pr)

slope n

Fixed Re

D s

D s

Laminar, fully developed circular pipe flow:

          Nu 4.36,    when q " constant, (page 543, ch. 10-6, ITHT)

          Nu 3.66,              when T constant, (page 543, ch. 10-6, ITHT)
Note: t

f

hD
k
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mhe therma conductivity should be calculated at T .

Fully developed, turbulent pipe flow:  Nu f(Re, Pr),
Nu can be related to Re & Pr experimentally, as shown.
 



Empirical Correlations
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Dittus-Boelter equation: Nu 0.023Re Pr ,  (eq 10-76, p 546, ITHT)
where n 0.4 for heating (T T ), n 0.3 for cooling (T T ).
The range of validity: 0.7 Pr 160, Re 10,000, / 10.
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Note: This equation can be used only for moderate temperature difference with all 
the properties evaluated at Tm .

Other more accurate correlation equations can be found in other references.  
Caution: The ranges of application for these correlations can be quite different.
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Example (cont.)

In our example, we need to first calculate the Reynolds number: water at 35°C, 
Cp=4.18(kJ/kg.K), =7x10-4 (N.s/m2), kf =0.626 (W/m.K), Pr=4.8.

4

D 1/ 2 2 / 3

4 4(0.15)Re 5460
(0.05)(7 10 )

Re 4000, it is turbulent pipe flow.
Use the Gnielinski correlation, from the Moody chart, f 0.036, Pr 4.8

( / 8)(Re 1000) Pr (0.Nu
1 12.7( / 8) (Pr 1)

D

m DVD mA
D

f
f


         




 


 
 

& &

1/ 2 2 / 3

2

036 / 8)(5460 1000)(4.8) 37.4
1 12.7(0.036 / 8) (4.8 1)

0.626 (37.4) 469( / . )
0.05

f
D

k
h Nu W m K

D




 

  



Energy Balance

Question (2): How can we determine the required pipe length?
Use energy balance concept: (energy storage) = (energy in) minus (energy out).  
energy in = energy received during a steady state operation (assume no loss)
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Temperature Distribution

s s

s

From local Newton's cooling law:
q hA(T ) ' ( )(T ( ) ( ))

' 200( ) ( ) 20 0.319 22.7 0.319 ( )
(0.05)(469)

At the end of the pipe, T ( 94) 52.7( )
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Question (3): Can we determine the water temperature variation along the pipe?

Recognize the fact that the energy balance equation is valid for 
any pipe length x:

'( ) ( ( ) )
' 200( ) 20 20 0.319

(0.15)(4180)
It is a linear distribution along the pipe
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Question (4): How about the surface temperature distribution?



Temperature variation for constant heat flux

Note: These distributions are valid only in the fully developed region.  In the 
entrance region, the convection condition should be different.  In general, the 
entrance length x/D10 for a turbulent pipe flow and is usually negligible as 
compared to the total pipe length.
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Constant temperature
difference due to the 
constant heat flux.



Internal Flow Convection 
-constant surface temperature case

Another commonly encountered internal convection condition is when the 
surface temperature of the pipe is a constant.  The temperature distribution in 
this case is drastically different from that of a constant heat flux case.  Consider 
the following pipe flow configuration:

Tm,i Tm,o
Constant Ts
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Temperature distribution
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Note: q hA(T ) is valid locally only, since T is not a constant
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Temperature distribution

,

( ) exp( ),   for constant surface temperaturem s
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The difference between the averaged fluid temperature and the surface 
temperature decreases exponentially further downstream along the pipe.



Log-Mean Temperature Difference

,

,

, , , ,

For the entire pipe:
( )exp( ) or 

ln( )

( ) (( ) ( ))

( )
ln( )

where  is cal
ln( )

m o s o s
P

om i s i P

i

P m o m i P s m i s m o

o i
P i o s s lm

o

i

o i
lm

o

i

T T T hAh PL mC TT T T mC
T

q mC T T mC T T T T
T TmC T T hA hA TT

T
T TT T

T

 
    

 


     

  
      




  
 




&
&

& &

&

led the log mean temperature difference.

This relation is valid for the entire pipe.



Free Convection

A free convection flow field is a self-sustained flow driven by the 
presence of a temperature gradient.  (As opposed to a forced 
convection flow where external means are used to provide the flow.)  
As a result of the temperature difference, the density field is not 
uniform also.  Buoyancy will induce a flow current due to the 
gravitational field and the variation in the density field.  In general, 
a free convection heat transfer is usually much smaller compared to 
a forced convection heat transfer.  It is therefore important only 
when there is no external flow exists.

hot

cold


 

 T  

Flow is unstable and a circulatory
pattern will be induced.



Basic Definitions

Buoyancy effect:

Warm, 

Surrounding fluid, cold, 

Hot plate
Net force=(

 

- gV

The density difference is due to the temperature difference and it can be 
characterized by ther volumetric thermal expansion coefficient, :

1 1 1( )PT T T T
T

  
  

 





 
     

  
  



Grashof Number and Rayleigh Number

Define Grashof number, Gr, as the ratio between the buoyancy force and the 
viscous force: 33

2 2

( )Sg T T Lg TLGr 
 


 

• Grashof number replaces the Reynolds number in the convection correlation 
equation.  In free convection, buoyancy driven flow sometimes dominates the 
flow inertia, therefore, the Nusselt number is a function of the Grashof number 
and the Prandtle number alone.   Nu=f(Gr, Pr).  Reynolds number will be 
important if there is an external flow.  (combined forced and free convection.

• In many instances, it is better to combine the Grashof number and the 
Prandtle number to define a new parameter, the Rayleigh number, Ra=GrPr.  
The most important use of the Rayleigh number is to characterize the laminar 
to turbulence transition of a free convection boundary layer flow.  For 
example, when Ra>109, the vertical free convection boundary layer flow over 
a flat plate becomes turbulent.



Example

Determine the rate of heat loss from a heated pipe as a result of 
natural (free) convection.

Ts =100C

T

 

=0°C D=0.1 m

Film temperature( Tf ): averaged boundary layer temperature Tf =1/2(Ts +T 

 

)=50 C.
kf =0.03 W/m.K, Pr=0.7, =210-5 m2/s, =1/Tf =1/(273+50)=0.0031(1/K)

3 3
6

2 5 2

1/ 6
2

9 /16 8 / 27

2

( ) (9.8)(0.0031)(100 0)(0.1)Pr (0.7) 7.6 10 .
(2 10 )

0.387{0.6 } 26.0  (equation 11.15 in Table 11.1)
[1 (0.559 / Pr) ]
0.03 (26) 7.8( / )
0.1

( ) (7.8)( )(

S

D

f
D

S

g T T LRa

RaNu

k
h Nu W m K

D
q hA T T











 
   



  


  

   0.1)(1)(100 0) 244.9( )
Can be significant if the pipe are long.

W 
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