



# MODULE 10 MASS Transfer



# What is Mass Transfer?



"Mass transfer specifically refers to the relative motion of species in a mixture due to concentration gradients."

#### **Analogy between Heat and Mass Transfer**

Since the principles of mass transfer are very similar to those of heat transfer, the analogy between heat and mass transfer will be used throughout this module.



# **Mass transfer through Diffusion**

Conduction

**Mass Diffusion** 

$$q'' = -k \frac{dT}{dy} \left[ \frac{J}{m^2 s} \right]$$

(Fourier's law)

$$j''_{A} = -\rho D_{AB} \frac{d\xi_{A}}{dy} \left[ \frac{kg}{m^{2}s} \right]$$

(Fick's law)

 $\rho$  is the density of the gas mixture

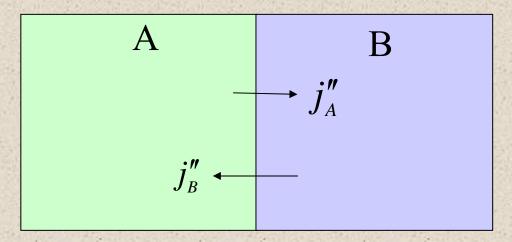
DAB is the diffusion coefficient

 $\xi_A = \rho_A / \rho$  is the mass concentration of component A





## **Mass transfer through Diffusion**



The sum of all diffusion fluxes must be zero:  $\sum j''_i = 0$ 

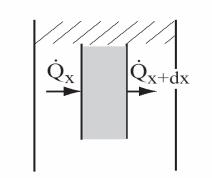
$$\xi_{A} + \xi_{B} = 1$$
$$\frac{d}{dy}\xi_{A} = -\frac{d}{dy}\xi_{B}$$
$$D_{BA} = D_{AB} = \Gamma$$





• Consider unsteady diffusive transfer through a layer

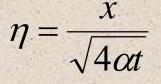
*Heat conduction, unsteady, semi-infinite plate* 



| $ ho c \frac{\partial Z}{\partial t}$ | - = -   k             | $\left(\frac{\partial T}{\partial x}\right)$ |
|---------------------------------------|-----------------------|----------------------------------------------|
| $\partial T$                          | $k \partial^2 T$      | $-\alpha \partial^2 T$                       |
| $\partial t$                          | $\rho c \partial x^2$ | $=\alpha \frac{1}{\partial x^2}$             |

 $PDE \rightarrow ODE$ 

Similarity transformation:  $\frac{d^2\theta}{dv^2} + 2\eta \frac{d\theta^*}{dn} = 0$   $\eta = \frac{x}{\sqrt{4\alpha t}}$ 





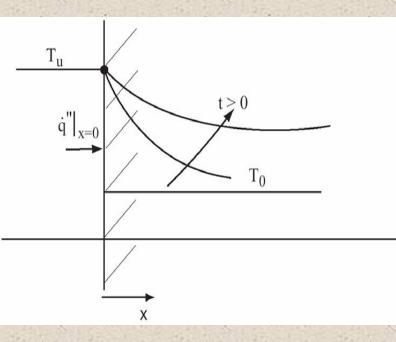


Solution:

$$\frac{T - T_0}{T_u - T} = 1 - erf\left(\frac{x}{\sqrt{4\alpha t}}\right)$$

Temperature field

Æ



Heat flux

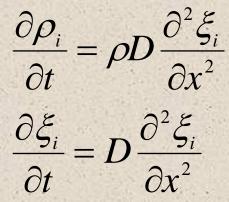
$$\Big|_{x=0} = -k \frac{dT}{dx}\Big|_{x=0} = \frac{k}{\sqrt{\pi \alpha t}} (T_u - T_0) = \sqrt{\frac{kc\rho}{\pi t}} (T_u - T)$$

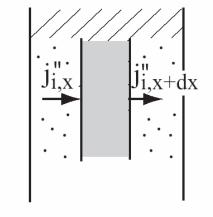




Diffusion of a gas component, which is brought in contact with another gas layer at time t=0

Differential equation:





Transient diffusion

Initial and boundary conditions:

 $\begin{aligned} \xi_i(t=0,x) &= \xi_{i,o} \\ \xi_i(t>0,x=0) &= \xi_{i,u} \\ \xi_i(t>0,x\to\infty) &= \xi_{i,o} \end{aligned}$ 



Berartment Or the Chanical Engineering

Solution:

$$\frac{\xi_i - \xi_{i,o}}{\xi_u - \xi_{i,o}} = 1 - erf\left(\frac{x}{\sqrt{4Dt}}\right)$$

Concentration field



Diffusive mass flux  $j''_{i|x=0} = \frac{\rho D}{\sqrt{\pi Dt}} \left(\xi_{i,Ph} - \xi_{i,o}\right)$ 



## **Diffusive mass transfer on a surface** (Mass convection)

Fick's Law, diffusive mass flow rate:

$$j''_{A} = -\rho D \frac{\partial \xi}{\partial y}\Big|_{y=0} = -\rho D \frac{\xi_{\infty} - \xi_{w}}{L} \frac{\partial \xi^{*}}{\partial y^{*}}\Big|_{y^{*}=0}$$

mass transfer coefficient

**Sfer coefficient** 
$$h_{mass}\left[\frac{kg}{m^2s}\right]$$
  
 $j''_A = h_{mass}(\xi_w - \xi_\infty)$ 

Dimensionless mass transfer number, the Sherwood number Sh

$$\frac{h_{mass}L}{\rho D} = \operatorname{Sh} = \frac{\partial \xi^*}{\partial y^*}\Big|_{y^*=0} = f(\operatorname{Re}, \operatorname{Sc})$$

$$Sh = C \operatorname{Re}^{m} Sc^{n}$$

Note: Compare with energy eqn. and Nusselt No.: The constants C and the exponents *m* and *n* of both relationships must be equal for comparable boundary conditions.



#### **Diffusive mass transfer on a surface..**

hachanical Engineering

Dimensionless number to represent the relative magnitudes of heat and mass diffusion in the thermal and concentration boundary layers

Lewis No.  $Le = \frac{Sc}{Pr} = \frac{\alpha}{D} = \frac{Thermal diffusivity}{Mass diffusivity}$ 

#### Analogy between heat and mass transfer

Comparing the correlation for the heat and mass transfer

$$\frac{Sh}{Nu} = \left(\frac{Sc}{Pr}\right)'$$

Hence,

$$\frac{h_{mass}}{h/c_p} = \left(\frac{Sc}{Pr}\right)^n$$

For gases,  $Pr \approx Sc$ , hence:

 $\frac{h_{mass}}{h/c_p} = 1$ 

### Lewis relation