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. . . . . .

INTRODUCTION

Parallel manipulators: One or more loops → No first or last
link.
No natural choice of end-effector or output link → Output
link must be chosen.
Number of joints is more than the degree-of-freedom →
Several joints are not actuated.
Un-actuated or passive joints can be
multi-degree-of-freedom joints.
Two main problems: Direct Kinematics and Inverse
Kinematics.
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EXAMPLES OF PARALLEL ROBOTS
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Figure 1: Planar 4-bar Mechanism

One-degree-of-freedom mechanism with 4 joints — Very
well known.
Link 2 is called coupler and is the typical output link.
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EXAMPLES OF PARALLEL ROBOTS
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Figure 2: Three-degree-of-freedom
Parallel Manipulator

9 joints only three P joints
actuated.
Top (moving) platform is
the output link.
Multi-degree-of-freedom
spherical(S) joints are
passive.
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EXAMPLES OF PARALLEL ROBOTS

Figure 3: Original Stewart platform (1965)
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EXAMPLES OF PARALLEL ROBOTS
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Figure 4: Model of a three-fingered hand

Three fingers
modeled a R-R-R
chain.
Fingers gripping an
object with point
contact and no slip.
Point contact
modeled with S
joint.
Object (output link)
is an equilateral
triangle.
Three DOF, 12
joints.
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APPLICATIONS OF PARALLEL

ROBOTS
 
 
 
 
 
 
 
 
 
 
 
   Industrial manufacturing  
  

Micro-positioning 

 

Modern tyre testing 
machine

   

Physik Instrumetente 
http://www.physikinstrumente.com 

 
   

Precise alignment of 
mirrorRobotic surgery 

 
 
 
 
 
 
 
 
 
  

Figure 5: Some uses of Gough-Stewart platform
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DEGREES OF FREEDOM (DOF)
Grübler-Kutzbach’s criterion

DOF = λ (N −J −1)+
J

∑
i=1

Fi (1)

N – Total number of links including the fixed link (or base),
J – Total number of joints connecting only two links (if
joint connects three links then it must be counted as two
joints),
Fi – Degrees of freedom at the i th joint, and
λ = 6 for spatial, 3 for planar manipulators and
mechanisms.
4-bar mechanism – N = 4, J = 4,
∑J

i=1 Fi = 1+1+1+1 = 4, λ = 3 → DOF = 1.
3-RPS manipulator – N = 8, J = 9,
∑J

i=1 Fi = 6×1+3×3 = 15, λ = 6 → DOF = 3.
Three-fingered hand – N = 11, J = 12,
∑J

i=1 Fi = 9+9 = 18, λ = 6 → DOF = 6.
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. . . . . .

DEGREES OF FREEDOM (CONTD.)

DOF — The number of independent actuators.
In parallel manipulators, J > DOF → J −DOF joints are
passive.

Example: 4-bar mechanism, J = 4 and DOF = 1 → Only
one joint is actuated and three are passive.
Example: 3-RPS manipulator, J = 9 and DOF = 3 → 6
joints are passive.

Passive joints can be multi-degree-of-freedom joints.
In 3-RPS manipulator, three-degree-of-freedom spherical
(S) joints are passive.
In a Stewart platform, the S and U joints are passive.

Configuration space q = (θ ,ϕ)
θ are actuated joints & θ ∈ ℜn (n = DOF )
ϕ is the set of passive joints & ϕ ∈ ℜm

All passive joints /∈ ϕ ⇒ (n+m)≤ J
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. . . . . .

LOOP-CLOSURE CONSTRAINT

EQUATIONS

m passive joint variables → m Independent equations
required to solve for ϕ for given n actuated variable,
θi , i = 1,2, ...,n.
General approach to derive m loop-closure constraint
equations

...1 ‘Break’ parallel manipulator into 2 or more serial
manipulators,

...2 Determine D-H parameters for serial chains and obtain
position and orientation of the ‘Break’ for each chain,

...3 Use joint constraint (see Module 2, Lecture 2) at the
‘Break(s)’ to re-join (close) the parallel manipulator.

Trick is to ‘break’ such that
...1 The number of passive variables m is least, and
...2 Minimum number of constraint equations,

ηi (q) = 0, i = 1, ...,m are used.
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CONSTRAINT EQUATIONS – 4-BAR

EXAMPLE
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Figure 6: The four-bar mechanism

One loop – Fixed frames {L} and {R}, {R} is translated
by l0 along the X− axis.
{1}, {2}, {3}, and {Tool} are as shown. Note only X̂
shown for convenience.
The sequence OL-O1-O2-O3-OTool can be thought of as a
planar 3R manipulator
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CONSTRAINT EQUATIONS – 4-BAR

EXAMPLE

D-H parameters of the planar 3R manipulator are
i αi−1 ai−1 di θi
1 0 0 0 θ1
2 0 l1 0 ϕ2
3 0 l2 0 ϕ3

From D-H table find 0
3[T ] (See Slide # 51, Lecture 3,

Module 2)
For planar 3R and tool of length l3, find 3

Tool [T ].
Tool
R [T ] is given

Tool
R [T ] =


−cosϕ1 −sinϕ1 0 0
sinϕ1 −cosϕ1 0 0

0 0 1 0
0 0 0 1


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. . . . . .

CONSTRAINT EQUATIONS – 4-BAR

EXAMPLE

The loop-closure equations for the four-bar mechanism is

L
1[T ]12[T ]23[T ]3Tool [T ]Tool

R [T ] = L
R [T ]

Planar loop → Only 3 independent equations

l1 cosθ1+ l2 cos(θ1+ϕ2)+ l3 cos(θ1+ϕ2+ϕ3) = l0
l1 sinθ1+ l2 sin(θ1+ϕ2)+ l3 sin(θ1+ϕ2+ϕ3) = 0

θ1+ϕ2+ϕ3+(π −ϕ1) = 4π (2)

Loop-closure equations: all four joint variables present.
q = (θ1,ϕ1,ϕ2,ϕ3).
The actuated joint θ = θ1.
The passive joints ϕ = (ϕ1,ϕ2,ϕ3).

In this approach n = 1, m = 3 and J = 4.

ASHITAVA GHOSAL (IISC) ROBOTICS: ADVANCED CONCEPTS & ANALYSIS NPTEL, 2010 16 / 80



. . . . . .

CONSTRAINT EQUATIONS (CONTD.)

Difficulties in multiplying 4×4 matrices and obtaining
constraint equations:

...1 Presence of multi-degree-of-freedom spherical (S) and
Hooke (U) joints in a loop.

...2 Obtaining independent loops in the presence of several
loops.

Represent multi-degree-of-freedom joint by two or more
one-degree-of-freedom joints and obtain an equivalent 4×4
transformation matrix.
Obtaining independent loops not easy in this way!
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CONSTRAINT EQUATIONS (CONTD.)
Each leg is U-P-S chain, λ = 6, N = 14, J = 18,
∑J

i=1 Fi = 36 → DOF = 6.
6 P joints actuated → 30 passive variables.

U Joint

Extensible Leg

Fixed Base

Spherical Joint

P1

P4

P5

P6

Prismatic
Joint

P2

P3

Top Platform

B1

B2

B3

B4

B5

{B0}

{P0}

B6

Figure 7: The Stewart-Gough
platform

Many loops – For example, 5 of
the form
Bi −Pi −Pi+1−Bi+1−Bi ,
i = 1, ..,5, 4 of the form
Bi −Pi −Pi+2−Bi+2−Bi ,
i = 1, ..,4, and 3 of the form
Bi −Pi −Pi+3−Bi+3−Bi ,
i = 1,2,3.
Each of the 12 loops can have
(potentially) 6 independent
equations → Which 30 equations
to choose?!
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4-BAR EXAMPLE REVISITED
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Figure 8: The four-bar mechanism ‘broken’ in different ways
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4-BAR EXAMPLE REVISITED

Alternate way: ‘break’ loop at third joint (figure 8(a)).
One planar 2R manipulator + one planar 1R manipulator.
Obtain D-H tables for both (see Slide # 62, Lecture 3,
Module 2)
Easy to obtain L

1[T ], 1
2[T ] & R

1 [T ].
Using l2 and l3, obtain L

Tool [T ] and R
Tool [T ].

From L
Tool [T ] extract X and Y components of Lp

x = l1 cosθ1+ l2 cos(θ1+ϕ2), y = l1 sinθ1+ l2 sin(θ1+ϕ2)

From R
Tool [T ], extract vector Rp to get

x = l3 cosϕ1, y = l3 sinϕ1

Use constraint for R joint (Slide # 30, Lecture 2, Module
2)

x = l1 cosθ1+ l2 cos(θ1+ϕ2) = l0+ l3 cosϕ1

y = l1 sinθ1+ l2 sin(θ1+ϕ2) = l3 sinϕ1 (3)

l0 is the distance along the X− axis between {L} and {R}.
In this case only two constraint equation: q = (θ1,ϕ1,ϕ2) –
n = 1, m = 2 and J = 3ASHITAVA GHOSAL (IISC) ROBOTICS: ADVANCED CONCEPTS & ANALYSIS NPTEL, 2010 20 / 80



. . . . . .

4-BAR EXAMPLE REVISITED

Another way is to ‘break’ the second link (see figure 8(b)).
Two planar 2R manipulators
Obtain the X and Y components of Lp as

x = l1 cosθ1+a cos(θ1+ϕ2), y = l1 sinθ1+a sin(θ1+ϕ2)

Likewise X and Y components of Rp are

x = l3 cosϕ1+b cos(ϕ1+ϕ3), y = l3 sinϕ1+b sin(ϕ1+ϕ3)

where l2 = a+b and the angle ϕ3 is as shown in figure 8(b).
Impose the constraint that the broken link is actually rigid

x = l1 cosθ1+a cos(θ1+ϕ2) = l0+ l3 cosϕ1+b cos(ϕ1+ϕ3)

y = l1 sinθ1+a sin(θ1+ϕ2) = l3 sinϕ1+b sin(ϕ1+ϕ3)

θ1+ϕ2 = ϕ1+ϕ3+π (4)

Similar to equation (2) – n = 1, m = 3 and J = 4
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. . . . . .

4-BAR EXAMPLE REVISITED

Yet another way to ‘break’ loop is shown in figure 8(c).
Obtain Lp and Rp as

Lp = (l1 cosθ1, l1 sinθ1)
T , Rp = (l3 cosϕ1, l3 sinϕ1)

T

Enforce the constraint of constant length l2 to obtain

η1(θ1,ϕ1) = (l1 cosθ1− l0− l3 cosϕ1)
2+(l1 sinθ1− l3 sinϕ1)

2− l22 = 0
(5)

This constraint is analogue of S −S pair constraint (see
Slide # 34, Lecture 2, Module 2) for planar R −R pair.
Only one constraint equation1 – q = (θ1,ϕ1), n = m = 1 &
J = 4.

1In the four-bar kinematics this is the well known Freudenstein’s
equation (see Freudenstein, 1954).

ASHITAVA GHOSAL (IISC) ROBOTICS: ADVANCED CONCEPTS & ANALYSIS NPTEL, 2010 22 / 80



. . . . . .

TWO PROBLEMS IN KINEMATICS OF

PARALLEL MANIPULATORS

Direct Kinematics Problem: Two-part problem
statement

Step 1: Given the geometry of the manipulator and the
actuated joint variables, obtain passive joint variables.
Step 2: Obtain position and orientation of a chosen
output link.

Much harder than DK problem for a serial manipulator.
Leads to the notion of mobility and assemble-ability of a
parallel manipulator or a closed-loop mechanism.
Inverse Kinematics Problem:
Given the geometry of the manipulator and the position
and orientation of the chosen end-effector or output link,
obtain the actuated and passive joint variables.

Simpler than direct kinematics problem.
Generally simpler than IK of serial manipulators.
Often done in parallel – One of the origins for the term
“parallel” in parallel manipulators.
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. . . . . .

SUMMARY

Parallel manipulators: one or more loops & and no natural
choice of end-effector.
Parallel manipulator – Number of actuated joints less than
total number of joints.
Degree-of-freedom is less than total number of joints.
Configuration space of parallel manipulator q = (θ ,ϕ) –
Dimension of q chosen as small as possible.
Actuated variables – θ ∈ ℜn, Passive variables – ϕℜm

Need to derive m constraint equations.
Two problems — Direct kinematics and inverse kinematics.

ASHITAVA GHOSAL (IISC) ROBOTICS: ADVANCED CONCEPTS & ANALYSIS NPTEL, 2010 24 / 80



. . . . . .

OUTLINE
.. .1 CONTENTS

.. .2 LECTURE 1
Introduction
Loop-closure Constraint Equations

.. .3 LECTURE 2
Direct Kinematics of Parallel Manipulators

.. .4 LECTURE 3
Mobility of Parallel Manipulators

.. .5 LECTURE 4
Inverse Kinematics of Parallel Manipulators

.. .6 LECTURE 5
Direct Kinematics of Stewart Platform Manipulators

.. .7 ADDITIONAL MATERIAL
Problems, References and Suggested Reading

ASHITAVA GHOSAL (IISC) ROBOTICS: ADVANCED CONCEPTS & ANALYSIS NPTEL, 2010 25 / 80



. . . . . .

DIRECT KINEMATICS OF PARALLEL

MANIPULATORS

The link dimensions and other geometrical parameters are
known.
The values of the n actuated joints are known.
First obtain m passive joint variables.

Obtain (minimal) m loop-closure constraint equations in m
passive and n active joint variables.
Use elimination theory/Sylvester’s dialytic
method/Bézout’s method (see Module 3, Lecture 4)
Solve set of m non-linear equations, if possible, in
closed-form for the passive joint variables ϕi , i = 1, ..,m

Obtain position and orientation of chosen output link from
known θ and ϕ – Recall no natural end-effector and hence
have to be chosen!
No general method as compared to the direct kinematics of
serial manipulator – Approach illustrated with three
examples.
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PLANAR 4-BAR MECHANISM
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ŶL

X̂L

ŶR
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Figure 9: The four-bar mechanism - revisited

Simplest possible closed-loop mechanism and studied
extensively (see, for example Uicker et al., 2003).
A good example to illustrate all steps in kinematics of
parallel manipulators!
Simple loop-closure equations → All steps can be by hand!
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4-BAR – LOOP-CLOSURE EQUATIONS

From loop-closure equations (4) (see Figure 8(b)),

x− l0 = l3 cosϕ1−b cos(θ1+ϕ2), y = l3 sinϕ1−b sin(θ1+ϕ2)

Denote δ = θ1+ϕ2, squaring and adding

A1 cosδ +B1 sinδ +C1 = 0 (6)

where A1 = x − l0, B1 = y ,
C1 = (1/2b)[(x − l0)2+ y2+b2− l23 ]
From the first part of two equation (4)

x = l1 cosθ1+acos(θ1+ϕ2), y = l1 sinθ1+a sin(θ1+ϕ2)

Squaring, adding, and after simplification gives

A2 cosδ +B2 sinδ +C2 = 0 (7)

where A2 = x , B2 = y , C2 = (1/2a)[l21 −a2− x2− y2]
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. . . . . .

4-BAR MECHANISM – ELIMINATION

Convert equations (6) and (7) to quadratics by tangent
half-angle substitutions (see Module 3, Lecture 4)
Following Sylvester’s dialytic elimination method (see
Module 3, Lecture 4), det[SM] = 0 gives

(A1B2−A2B1)
2 = (A1C2−A2C1)

2+(B1C2−B2C1)
2

and δ =−2tan−1
(

A1C2−A2C1
(B1C2−B2C1)+(A1B2−A2B1)

)
.

det[SM] = 0, after some simplification, gives

4a2b2l02y2 = [b(x − l0)(l21 −a2− x2− y2)−
ax{(x − l0)2+ y2+b2− l23 }]2+ (8)

y2[b(l21 −a2− x2− y2)−a{(x − l0)2+ y2+b2− l23 }]2

Above sixth-degree curve is the coupler curve2.
2The coupler curve is extensively studied in kinematics of mechanisms.

For a more general form of the coupler curve and its interesting properties,
see Chapter 6 of Hartenberg and Denavit (1964).
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4-BAR – SOLUTION FOR PASSIVE

JOINT VARIABLES

The elimination procedure gives δ as a function of (x ,y)
and the link lengths.
Since θ1 is given,

ϕ2 = δ −θ1 =−2tan−1
(

A1C2−A2C1

(B1C2−B2C1)+(A1B2−A2B1)

)
−θ1

(9)
The angle ϕ1 can be obtained from equation (5).

l20 + l21 + l23 − l22 = cosϕ1(2l1l3 cosθ1−2l0l3)+ sinϕ1(2l1l3)
(10)

Finally, ϕ3 can be solved from the third equation in
equation (4)

ϕ3 = θ1+ϕ2−ϕ1−π (11)
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4-BAR – NUMERICAL EXAMPLE

l0 = 5.0, l1 = 1.0, l2 = 3.0, and l3 = 4.0 — The input link
rotates fully (Grashof’s criteria)
Figure 10(a) shows plot of ϕ1 vs θ1 – Both set of values
plotted.
From ϕ1 obtain ϕ2 and ϕ3 → Two coupler curves shown.
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(a) ϕ1 vs θ1 for 4-bar mechanism
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(b) Coupler curves for 4-bar mechanism

Figure 10: Numerical example for a 4-bar
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A THREE DOF PARALLEL

MANIPULATOR

X̂

Ŷ

Ẑ
Moving Platform

l3

l2

θ1

l1

θ2

θ3

p(x, y, z)

S1

S2S3

Axis of R1

Base Platform

Axis of R3

O

{Base}

Axis of R2

Figure 11: The 3-RPS parallel
manipulator – Revisited

D-H Table for a R-P-S leg (see
Module 2, Lecture 2, Slide #
64)

i αi−1 ai−1 di θi
1 0 0 0 θ1
2 −π/2 0 l1 0

All legs are same.
θ1, i = 1,2,3 are passive
variables.
li , i = 1,2,3 are actuated
variables.
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3-DOF EXAMPLE – LOOP-CLOSURE

EQUATIONS

Position vectors of three S joints (see Module 2, Lecture 2,
Slide # 65)

BaseS1 = (b− l1 cosθ1,0, l1 sinθ1)
T (12)

BaseS2 = (−b
2
+

1
2
l2 cosθ2,

√
3

2
b−

√
3

2
l2 cosθ2, l2 sinθ2)

T

BaseS3 = (−b
2
+

1
2
l3 cosθ3,−

√
3

2
b+

√
3

2
l3 cosθ3, l3 sinθ3)

T

Base an equilateral triangle circumscribed by circle of
radius b.
Impose S −S pair constraint (see Module 2, Lecture 2,
Slide # 34)

η1(l1,θ1, l2,θ2) = |(BaseS1−Base S2)|2 = k2
12

η2(l2,θ2, l3,θ3) = |(BaseS2−Base S3)|2 = k2
23

η3(l3,θ3, l1,θ1) = |(BaseS3−Base S1)|2 = k2
31 (13)

S joint variables do not appear – Due to S −S pair
equations!
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. . . . . .

3-DOF EXAMPLE – ELIMINATION

Assume b = 1 and k12 = k23 = k31 =
√

3a.
Eliminate using Sylvester’s dialytic method (see Module 3,
Lecture 4), θ1 from η1(·) = 0 and η3(·) = 0

η4(l1, l2, l3,θ2,θ3) =

(A1C2−A2C1)
2+(B1C2−B2C1)

2− (A1B2−A2B1)
2 = 0

where

C1 = 3−3a2+ l21 + l22 −3l2c2, A1 = l1l2c2−3l1, B1 =−2l1l2s2
C2 = 3−3a2+ l21 + l23 −3l3c3, A2 = l1l3c3−3l1, B2 =−2l1l3s3

Eliminate θ2 from η4(·) = 0 and η2(·) = 0, with
x3 = tan(θ3/2).

q8(x2
3 )

8+q7(x2
3 )

7+ ....+q1(x2
3 )+q0 = 0 (14)

An eight degree polynomial in x2
3 .
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. . . . . .

3-DOF EXAMPLE – ELIMINATION

Expressions for qi obtained using symbolic algebra
software, MAPLE R⃝, are very large. Two smaller ones are

q8 = (p0a4+p1a3+p2a2+p3a+p4)
2(p0a4−p1a3+p2a2−p3a+p4)

2

q0 = (r0a4+ r1a3+ r2a2+ r3a+ r4)2(r0a4− r1a3+ r2a2− r3a+ r4)2

where r0 = p0 =−9, r1 = 12(l3−3), p1 = 12(l3+3),
r2 = 3(l21 + l22 − l3(l3−10)−15), p2 = 3(l21 + l22 − l3(l3+10)−15),
r3 =−2(l3−3)(l21 + l22 + l23 −3), p3 =−2(l3+3)(l21 + l22 + l23 −3),
r4 = l43 −8l33 +3l22 +18l23 −2l3(l22 +6)− l21 (l

2
2 +2l3−3), and

p4 = l43 +8l33 +3l22 +18l23 +2l3(l22 +6)+ l21 (l
2
2 +2l3−3)

8 possible values of θ3 for given a and actuated variables
(l1, l2, l3)T .
Once θ3 is obtained, θ2 obtained from η2(·) = 0 and θ1
from η3(·) = 0.
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3-DOF EXAMPLE (CONTD.)

A natural output link is the moving platform.
Position and orientation of the moving platform:

Centroid of moving platform,

Basep =
1
3
(BaseS1+

Base S2+
Base S3) (15)

Orientation of moving platform or Base
Top [R] is

Base
Top [R] =

[
BaseS1−BaseS2
|BaseS1−BaseS2|

Ŷ (BaseS1−BaseS2)×(BaseS1−BaseS3)
|(BaseS1−BaseS2)×(BaseS1−BaseS3)|

]
(16)

where Ŷ is obtained from the cross-product of the third
and first columns.

Once li ,θi i = 1,2,3 are known Basep and Base
Top [R] can be

found.
Key step was the elimination of passive variables and
obtaining a single equation in one passive variable!
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3-DOF EXAMPLE – NUMERICAL

EXAMPLE

Polynomial in equation (14) is eight degree in (tanθ3/2)2.
Not possible to obtain closed-form expressions for θ1, θ2,
and θ3.
Numerical solution using Matlab R⃝

For a = 1/2, and for l1 = 2/3, l2 = 3/5 and l3 = 3/4
Two sets values θ3 =±0.8111, ±0.8028 radians.
For the positive values of θ3, θ2 = 0.4809, 0.2851 radians
and θ1 = 0.7471, 0.7593 radians respectively.
For the set (0.7471,0.4809,0.8111),
Basep = (0.0117,−0.0044,0.4248)T , and
The rotation matrix Base

Top [R] is given by

Base
Top [R] =

 0.8602 0.5069 −0.0564
−0.4681 0.8285 0.3074
0.2026 −0.2380 0.9499


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6-DOF EXAMPLE – D-H
PARAMETERS

l13
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l l l
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Figure 12: 3-RRRS parallel manipulator –
Revisited

D-H parameters for
R-R-R-S chain (see
Module 2, Lecture 2,
Slide # 67).

i αi−1 ai−1 di θi
1 0 0 0 θ1
2 π/2 l11 0 ψ1
3 0 l12 0 ϕ1

D-H parameters for
fingers in
{Fi}, i = 1,2,3
identical.
6DOF parallel
manipulator → Only 6
out of 12 θi , ψi , ϕi are
actuated.
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6-DOF EXAMPLE – LOOP-CLOSURE

EQUATIONS

Position vector of spherical joint i

Fi pi =

 cosθi (li1+ li2 cosψi + li3 cos(ψi +ϕi ))
sinθi (li1+ li2 cosψi + li3 cos(ψi +ϕi ))

li2 sinψi + li3 sin(ψi +ϕi )


With respect to {Base}, the locations of {Fi}, i = 1,2,3,
are known and constant Baseb1 = (0,−d ,h)T , Baseb2 =
(0,d ,h)T , Baseb3 = (0,0,0)T .
Orientation of {Fi}, i = 1,2,3, with respect to {Base} are
also known - {F1} and {F2} are parallel to {Base} and
{F3} is rotated by γ about the Ŷ.
The transformation matrices Base

pi
[T ] is

Base
F1

[T ]01[T ]12[T ]23[T ]3p1
[T ] – Last transformation includes

l13.
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. . . . . .

6-DOF EXAMPLE – LOOP-CLOSURE

EQUATIONS

Extract position vector Basep1 from last column of Base
F1

[T ]
Basep1 =

Base b1+
F1 p1 = cosθ1(l11+ l12 cosψ1+ l13 cos(ψ1+ϕ1))

−d + sinθ1(l11+ l12 cosψ1+ l13 cos(ψ1+ϕ1))
h+ l12 sinψ1+ l13 sin(ψ1+ϕ1)


Similarly for second leg

Basep2 =

 cosθ2(l21+ l22 cosψ2+ l23 cos(ψ2+ϕ2))
d + sinθ2(l21+ l22 cosψ2+ l23 cos(ψ2+ϕ2))

h+ l22 sinψ2+ l23 sin(ψ2+ϕ2)


For third leg Basep3 =

[R(Ŷ,γ)]

 cosθ3(l31+ l32 cosψ3+ l33 cos(ψ3+ϕ3))
sinθ3(l31+ l32 cosψ3+ l33 cos(ψ3+ϕ3))

l32 sinψ3+ l33 sin(ψ3+ϕ3)


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. . . . . .

6-DOF EXAMPLE – LOOP-CLOSURE

EQUATIONS

Use S −S pair constraint to get 3 loop-closure equations.
η1(θ1,ψ1,ϕ1,θ2,ψ2,ϕ2) = |Basep1−Base p2|2 = k2

12

η2(θ2,ψ2,ϕ2,θ3,ψ3,ϕ3) = |Basep2−Base p3|2 = k2
23 (17)

η3(θ3,ψ3,ϕ3,θ1,ψ1,ϕ1) = |Basep3−Base p1|2 = k2
31

where k12, k23 and k31 are constants.
Actuated: θ1,ψ1, θ2,ψ2, θ3, ψ3 & Passive: ϕ1, ϕ2, ϕ3.
Obtain expressions for passive variables using elimination.
Eliminate ϕ1 from first and third equation (17)→
η4(ϕ2,ϕ3, ·, ·) = 0.
Eliminate ϕ2 from η4(ϕ2,ϕ3, ·, ·) = 0 and second
equation (17) → Single equation in ϕ3.
Final equation is 16th degree polynomial in tan(ϕ3/2) —
Obtained using symbolic algebra software MAPLE R⃝.
Expressions for the coefficients of the polynomial very long!
– Numerical example shown next.
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6-DOF EXAMPLE – NUMERICAL

RESULTS

Assume d = 1/2, h =
√

3/2, li1 = 1, li2 = 1/2, li3 = 1/4
(i = 1,2,3), γ = π/4 and k12 = k23 = k13 =

√
3/2.

For the actuated joint variables, choose θ1 = 0.1,
ψ1 =−1.0, θ2 = 0.1, ψ2 =−1.2, θ3 = 0.3, ψ3 = 1.0
radians.
The sixteenth degree polynomial is obtained as
0.00012t16

3 − 0.00182t15
3 +0.01376t14

3 −0.05230t13
3 +0.13148t12

3

− 0.24391t11
3 +0.35247t10

3 −0.40965t93 +0.38696t83
− 0.29811t73 +0.18502t63 −0.09104t53 +0.03433t43
− 0.00968t33 +0.00201t23 −0.00037t3+0.00006 = 0

where t3 = tan(ϕ3/2).
Numerical solution gives two real values of ϕ3 as
(0.8831,1.8239) radians.
Corresponding values of ϕ1 and ϕ2 are (0.3679,0.1146)
radians and (1.4548,1.0448) radians, respectively.
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6-DOF EXAMPLE – NUMERICAL

RESULTS

The position vector of centroid, computed as in the 3-RPS
example, using the first set of θi , ψi , ϕi is

Basep=
1
3
(Basep1+

Base p2+
Base p3)= (1.3768,0.2624,0.1401)T

The rotation matrix Base
Object [R], computed similar to the

3-RPS example, is

Base
Object [R] =

 0.0306 0.2099 −0.9773
−0.9811 0.1806 0.0695
0.1910 −0.9609 0.2004



ASHITAVA GHOSAL (IISC) ROBOTICS: ADVANCED CONCEPTS & ANALYSIS NPTEL, 2010 43 / 80



. . . . . .

OUTLINE
.. .1 CONTENTS

.. .2 LECTURE 1
Introduction
Loop-closure Constraint Equations

.. .3 LECTURE 2
Direct Kinematics of Parallel Manipulators

.. .4 LECTURE 3
Mobility of Parallel Manipulators

.. .5 LECTURE 4
Inverse Kinematics of Parallel Manipulators

.. .6 LECTURE 5
Direct Kinematics of Stewart Platform Manipulators

.. .7 ADDITIONAL MATERIAL
Problems, References and Suggested Reading

ASHITAVA GHOSAL (IISC) ROBOTICS: ADVANCED CONCEPTS & ANALYSIS NPTEL, 2010 44 / 80



. . . . . .

MOBILITY OF PARALLEL

MANIPULATORS

Concept of workspace in serial manipulators → All
(x ,y ,z ; [R]) such that real solutions for the inverse
kinematics exists.
In parallel manipulators two concepts: mobility and
workspace.

Workspace dependent on the choice of output link.
Mobility: range of possible motion of the actuated joints in
a parallel manipulator.
Mobility is more important in parallel manipulators!

Mobility is determined by geometry/linkage dimensions →
Loop-closure constraint equations.
Mobility is related to the ability to assemble a parallel
manipulator at a configuration.
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. . . . . .

MOBILITY OF PARALLEL

MANIPULATORS

Mobility: All values of actuated variables such that real
value(s) of passive variables exists → Determined by direct
kinematics.
No real value of passive variable ⇒ Cannot be assembled.
Mobility → Obtain conditions for existence of real solutions
for the polynomial in one passive variable obtained after
elimination.
Very few parallel manipulators where the direct kinematics
can be reduced to the solution of a univariate polynomial
of degree 4 or less.
In most cases mobility determined numerically using search.
In 4-bar mechanism, mobility can be obtained in
closed-form.
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. . . . . .

MOBILITY OF 4-BAR MECHANISM

Loop-closure constraint equation of a 4-bar

η1(θ1,ϕ1)= (l1 cosθ1− l0− l3 cosϕ1)
2+(l1 sinθ1− l3 sinϕ1)

2− l22 = 0

On simplification η1 becomes

P cosϕ1+Q sinϕ1+R = 0 (18)

where P , Q, and R are given by

P = 2l0l3−2l1l3c1, Q =−2l1l3s1
R = l20 + l21 + l23 − l22 −2l0l1c1

l0, l1, l2, and l3 are the link lengths (see figure 6), and c1,
s1 are the sine and cosine of θ1, respectively.
Using tangent half-angle substitutions (see Module 3,
Lecture 3)

ϕ1 = 2tan−1
(
−Q ±

√
P2+Q2−R2

R −P

)
(19)
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. . . . . .

MOBILITY OF 4-BAR MECHANISM

For real ϕ1, P2+Q2−R2 ≥ 0
Limiting case: P2+Q2−R2 = 0 → Two ϕ1’s coinciding.
In the limiting case, the bounds on θ1 are

c1 =
l20 + l21 − l23 − l22 ±2l3l2

2l0l1
(20)

For full rotatability of θ1(0 ≤ θ1 ≤ 2π), θ1 cannot have any
bounds.
For θ1 to have full rotatability there cannot be a solution
to equation (20)!
For full rotatability of θ1, c1 > 1 or c1 <−1 in
equation (20)
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. . . . . .

MOBILITY OF 4-BAR MECHANISM

For full rotatability/mobility of θ1, first ϕ1 be real and then
θ1 be imaginary. –> Note the order of ϕ1 and θ1.
The condition c1 > 1 and c1 <−1 leads to

(l0− l1)2 > (l3− l2)2 (21)

and
(l0+ l1)< (l3+ l2) (22)

Two additional conditions from c1 > 1, c1 <−1 lead to
l3+ l2+ l1 < l0 and l0+ l1+ l2 < l3 → Violates triangle
inequality.
Equation (21) gives rise to four inequalities

l0− l1 > l3− l2
l0− l1 > l2− l3
l1− l0 > l3− l2 (23)
l1− l0 > l2− l3
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MOBILITY OF 4-BAR MECHANISM

For the case of l1 < l0

l0+ l2 > l1+ l3
l0+ l3 > l1+ l2 (24)

Equations (22) and (24) imply that l0, l2 and l3 are all
larger than l1.
Equations (22) and (24)→ l + s < p+q — s, l are the
shortest and largest links and p, q are intermediate links.
Likewise, for l1 > l0

l1+ l2 > l0+ l3
l1+ l3 > l0+ l2 (25)

and again l0 is the shortest link.
Concisely represent equations (22) and (25) as l + s < p+q
— Same as the Grashof’s criterion for 4-bar linkages.
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3-DOF PARALLEL MANIPULATOR

Three-DOF
parallel (3-RPS)
manipulator –
Polynomial is
eight degree in
x2
3 .

a = 0.5 and
(l1, l2, l3) ∈
[0.5, 1.5].
Points marked as
‘∗’ – No real and
positive values of
x2
3 .

Finer search →
More accurate
mobility region.

0.5

1

1.5

0.5

1

1.5
0.5

1

1.5

l
1

l
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l 3

Figure 13: Values of (l1, l2, l3) for imaginary θ3
(marked by ∗)
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SUMMARY

Mobility in parallel manipulators is analogous to
workspace3 in serial manipulators.
Actuated joint motion can be restricted and not due to
joint limits!
Mobility of actuated joints determines if an parallel
manipulator/mechanism can be assembled in a
configuration.
If no real solution to direct kinematics problem → Not
possible to assemble.
Analytical solution for mobility of a 4-bar mechanism yields
the well-known Grashof criterion.
Difficult to find mobility analytically for other
manipulators/mechanisms.
Numerical search based approach can be used.

3Some authors use mobilty in the same sense as degree-of-freedom!
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INVERSE KINEMATICS OF PARALLEL

MANIPULATORS

Problem statement: given
geometry and link parameters,
position and orientation of a chosen output link with
respect to a fixed frame,

Find the joint (actuated and passive) joint variables.
Simpler than the direct kinematics problem since no need
to worry about the multiple loops or the loop-closure
constraint equations.
Key idea is to ‘break’ the mechanism into serial chains and
obtain the joint angles of each chain in ‘parallel’.
Break parallel manipulators into chains such that no chain
is redundant.
Worst case: Solution of inverse kinematics of a general 6R
serial manipulator (See Module 3, Lecture 4).
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PLANAR 4-BAR MECHANISM

{L}

φ2
ŶL

X̂L

OL, O1

a

L
p

φ1

ŶR

X̂R

{R}

OR

b(x, y)

θ1

l0

φ

R
p

(x, y)

φ3

Link 1
l1

l3Link 3

Figure 14: Inverse kinematics of a four-bar
mechanism

Coupler is the
chosen output link.
Given the position of
a point Lp and the
rotation matrix L

2[R]
of the coupler link.
Planar case → x ,y
coordinates and the
orientation angle ϕ
given.
Lengths l0, l1,
l2 = a+b, a, b and
l3 are known.
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PLANAR 4-BAR MECHANISM

We have

x = l1 cosθ1+acos(θ1+ϕ2), y = l1 sinθ1+a sin(θ1+ϕ2)

where x and y are known.
The angle ϕ denoting the orientation of link 2 is given by

ϕ = θ1+ϕ2−2π

Solve for θ1 and ϕ2 as

θ1 = atan2(y −a sinϕ , x −acosϕ), ϕ2 = ϕ −θ1

In a similar manner, considering the equations

x = l0+ l3 cosϕ1+b cos(ϕ1+ϕ3), y = l3 sinϕ1+b sin(ϕ1+ϕ3)

ϕ = ϕ1+ϕ3−π

solve for ϕ1 and ϕ3.
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. . . . . .

PLANAR 4-BAR MECHANISM

ϕ obtained as θ1+ϕ2−2π and as ϕ1+ϕ3−π must be
same.
The four-bar mechanism is a one- degree-of-freedom
mechanism and only one of (x ,y ,ϕ) can be independent.

x and y are related through the sixth-degree coupler curve
(see equation (8))
ϕ must satisfy

x cosϕ + y sinϕ = (1/2a)(x2+ y2−a2− l21 )

The constraints on the given position and orientation of
the chosen output link, x ,y ,ϕ , are analogous to the case of
the inverse kinematics of serial manipulators when n < 6
(see Module 3, Lecture 3).
The inverse kinematics of a four-bar mechanism can be
solved when the given position and orientation is consistent.
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A 6-DOF PARALLEL MANIPULATOR

d

d

h

X̂

Ẑ

l11 l12

Ŷ

{Base}

θ1

S1

S2

S3

l13

{Object}

ψ1

φ1

Basep

{F3}

X̂

γ

Ẑ

Figure 15: Inverse kinematics of six-
degree-of-freedom parallel manipulator

Figure shows one
‘finger’ as an RRRS
chain.
Given the position and
orientation of the
‘gripped’ object with
respect to {Base}.
Obtain the rotations at
the nine joints in the
three ‘fingers’.
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INVERSE KINEMATICS OF 6-DOF
PARALLEL MANIPULATOR

Vector Basep locates the centroid of the gripped object.
Base
Object [R]is also available.

In {Object}, the location of S1, ObjectS1, is known. Hence,
(x ,y ,z)T =Base S1 =

Base
Object [R]ObjectS1+

Base pObject is
known.
From above

(x ,y ,z)T =

 cosθ1(l11+ l12 cosψ1+ l13 cos(ψ1+ϕ1))
−d + sinθ1(l11+ l12 cosψ1+ l13 cos(ψ1+ϕ1))

h+ l12 sinψ1+ l13 sin(ψ1+ϕ1)

 (26)

Equation (26) can be solved for θ1, ψ1 and ϕ1 using
elimination (see Module 3, Lecture 4) from known
(x ,y ,z)T .
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6-DOF PARALLEL MANIPULATOR

(CONTD.)

From equation (26), we get

x2+(y +d)2+(z −h)2 =
l211+ l212+ l213+2l11l12 cosψ1

+2l12l13 cosϕ1+2l11l13 cos(ψ1+ϕ1) (27)

Equation (27) and last equation in (26) can be written as

Ai cosψ1+Bi sinψ1+Ci = 0, i = 1,2 (28)

where

A1 = 2l11l12+2l11l13 cosϕ1, A2 = l13 sinϕ1

C1 = l211+ l212+ l213+2l12l13 cosϕ1− x2− (y +d)2− (z −h)2

B1 = −2l11l13 sinϕ1, B2 = l12+ l13 cosϕ1, C2 = h− z
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6-DOF PARALLEL MANIPULATOR

(CONTD.)
Following Sylvester’s dialytic method, eliminate ψ1 to get

4l211(l
2
12+ l213+2l12l13 cosϕ1) = C 2

1 +4l211(h− z)2

Using tangent half-angle formulas for cosϕ1 and sinϕ1, we
get a quartic equation

a4x4+a3x3+a2x2+a1x +a0 = 0 (29)

where x = tan(ϕ1/2).
Solve for ϕ1 from the quartic and obtain ψ1 as

ψ1 =−2tan−1
(

A1C2−A2C1

(B1C2−B2C1)+(A1B2−A2B1)

)
(30)

Finally, θ1 is obtained from

θ1 = atan2(y +d ,x) (31)

The joint variables for the other two fingers can be
obtained in same way!
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IK OF GOUGH-STEWART PLATFORM

{P0}

{B0}

P0p
i

B0bi

X̂

Ŷ

Ẑ

P Joint

S Joint

U Joint

B0t

li

Bi

Pi

Figure 16: A leg of a Stewart platform

From Figure 16, an
arbitrary platform point Pi
can be written in {B0} as

B0pi =
B0
P0
[R]P0pi +

B0 t
(32)

The P0pi is a known
constant vector in {P0}.
The location of the base
connection points B0bi are
known.
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. . . . . .

IK OF GOUGH-STEWART PLATFORM

From known B0
P0
[R] and translation vector B0t, obtain B0p1

[R(Ẑ,γi )]
T ((x ,y ,z)T −B0 b1) = [R(Ŷ,ϕi )][R(X̂,ψi )](0,0, li )T

= l1

 sinϕ1 cosψ1
−sinψ1

cosϕ1 cosψ1

 (33)

where B0p1 is denoted by (x ,y ,z)T .
Three non-linear equations in l1, ψ1, ϕ1 → solution

l1 = ±
√

[(x ,y ,z)T −B0 b1]2

ψ1 = atan2(−Y ,±
√

X 2+Z 2) (34)
ϕ1 = atan2(X/cosψ1,Z/cosψ1)

where X ,Y ,Z are the components of
[R(Ẑ,γi )]

T ((x ,y ,z)T −B0 b1).
Perform for each leg to obtain li , ψi and ϕi for i = 1, ...,6.
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SUMMARY

Inverse kinematics involve obtaining actuated joint
variables given chosen end-effector position and orientation.
Key concept is to “break” the parallel manipulator into
“simple” serial chains.
Inverse kinematics problem can be solved by considering
each serial chain in parallel.
Inverse kinematics of Gough-Stewart platform much
simpler than direct kinematics.
In general, inverse kinematics problem simpler for parallel
manipulator!
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. . . . . .

GOUGH-STEWART PLATFORM

MANIPULATORS

Gough-Stewart platform – Six-DOF parallel manipulator.
Extensively used in flight simulators, machine tools,
force-torque sensors, orienting device etc. (Merlet, 2001).
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Joint
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Joint
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U Joint

Note: Each Base Joint is an U Joint
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B3
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l6

Moving Platform

(a) 3–3 Stewart platform
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(b) 6–3 Stewart platform

U Joint
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(c) 6–6 Stewart platform

Figure 17: Three configurations of Stewart platform manipulator
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GEOMETRY OF A LEG

{P0}

{B0}

P0p
i

B0bi

X̂

Ŷ

Ẑ

P Joint

S Joint

U Joint

B0t

li

Bi

Pi

Figure 18: A leg of a Stewart platform
-revisited

Hooke (‘U’) joint modeled
as 2 intersecting R joint →
Each leg RRPS chain.
Hooke joint equivalent to
successive Euler rotations
(see Module 2, Lecture 2,
Lecture 2) ϕi about Ŷi and
ψi about X̂i .
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. . . . . .

GEOMETRY OF A LEG (CONTD.)

The vector B0pi locating the spherical joint can be written
as

B0pi = B0bi +[R(Ẑ,γi )][R(Ŷ,ϕi )][R(X̂,ψi )](0,0, li )T

= B0bi + li

 cosγi sinϕi cosψi + sinγi sinψi
sinγi sinϕi cosψi − cosγi sinψi

cosϕi cosψi

(35)

Constant vector B0bi locates the origin Oi {i} at the
Hooke joint i ,
Constant angle γi determines the orientation of {i} with
respect to {B0}, and
li is the translation of the prismatic (P) joint in leg i .

B0pi is a function of two passive joint variables, ϕi and ψi ,
and the actuated joint variable li .
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DK OF 3–3 CONFIGURATION

6 legs are B1−P1, B1−P3, B2−P1, B2−P2, B3−P2 and
B3−P3 (see Figure 17(a)).
6 actuated and 12 passive variables → 12 constraint
equations needed.
Three constraints: Distances between P1, P2 and P3 are
constant (similar to 3-RPS).
Point P1 reached in two ways: 3 vector equations or 9
scalar equations.

B0b1+
−−−→
B1P1 = B0b2+

−−−→
B2P1

B0b2+
−−−→
B2P2 = B0b3+

−−−→
B3P2

B0b3+
−−−→
B3P3 = B0b1+

−−−→
B1P3

16th degree polynomial in tangent half-angle obtained after
elimination (Nanua, Waldron, Murthy, 1990).
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DK OF 6–3 CONFIGURATION

Direct kinematics similar to 3–3 configurations (see
Figure 17(b))
6 legs are B1−P1, B2−P1, B3−P2, B4−P2, B5−P3 and
B6−P3.
6 actuated and 12 passive variables → 12 constraint
equations needed.
Three constraints: Distances between P1, P2 and P3 are
constant (similar to 3-RPS).
P1, P2 and P3 reached in two ways → 9 scalar equations

B0b1+
−−−→
B1P1 = B0b2+

−−−→
B2P1

B0b3+
−−−→
B3P2 = B0b4+

−−−→
B4P2

B0b5+
−−−→
B5P3 = B0b6+

−−−→
B6P3

16th degree polynomial in tangent half-angle obtained after
elimination.
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. . . . . .

DK OF 6–6 CONFIGURATION IN JOINT

SPACE

6 distinct points in the fixed base and moving platform (see
Figure 17(c))
Hooke joint modeled as 2 intersecting rotary (R) joint → 6
actuated and 12 passive variables → Need 12 constraint
equations!.
B0pi revisited

B0pi = B0bi +[R(Ẑ,γi )][R(Ŷ,ϕi )][R(X̂,ψi )](0,0, li )T

= B0bi + li

 cosγi sinϕi cosψi + sinγi sinψi
sinγi sinϕi cosψi − cosγi sinψi

cosϕi cosψi

(36)

6 constraint equations from S −S pair constraints (see
Module 2, Lecture 2)
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. . . . . .

DK OF 6–6 CONFIGURATION IN JOINT

SPACE

6 S −S pair constraints

η1(q) = |B0p1−B0 p2|2−d2
12 = 0

η2(q) = |B0p2−B0 p3|2−d2
23 = 0

η3(q) = |B0p3−B0 p4|2−d2
34 = 0

η4(q) = |B0p4−B0 p5|2−d2
45 = 0 (37)

η5(q) = |B0p5−B0 p6|2−d2
56 = 0

η6(q) = |B0p6−B0 p1|2−d2
61 = 0

Need another 6 independent constraint equations.
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DK OF 6–6 CONFIGURATION IN JOINT

SPACE

Distance between point B0p1 and B0p3, B0p4 and B0p5
must be constant

η7(q) = |B0p1−B0 p3|2−d2
13 = 0

η8(q) = |B0p1−B0 p4|2−d2
14 = 0

η9(q) = |B0p1−B0 p5|2−d2
15 = 0 (38)

All six points Pi , i = 1, ...,6 must lie on a plane

η10(q) = (B0p1−B0 p3)× (B0p1−B0 p4) · (B0p1−B0 p2) = 0
η11(q) = (B0p1−B0 p4)× (B0p1−B0 p5) · (B0p1−B0 p3) = 0
η12(q) = (B0p1−B0 p5)× (B0p1−B0 p6) · (B0p1−B0 p4) = 0

(39)

dij is the known distance between the spherical joints Si
and Sj on the top platform.
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DK OF 6–6 CONFIGURATION IN JOINT

SPACE

12 non-linear equations in twelve passive variables
ϕi ,ψi , i = 1, ...,6, and six actuated joint variables
li , i = 1, ...,6.
All equations do not contain all passive variables → First
equation in (37) is a function of only ϕ1, ψ1, l1, ϕ2, ψ2,
and l2.
12 equations are not unique and one can have other
combinations.
For direct kinematics, eliminate 11 passive variables from
these 12 equations.
Very hard and not yet done!
Direct kinematics of Gough-Stewart platform easier with
task space variables.
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DK OF 6–6 CONFIGURATION IN TASK

SPACE

{P0}

{B0}

P0p
i

B0bi

X̂

Ŷ

Ẑ

P Joint

S Joint

U Joint

B0t

li

Bi

Pi

Figure 19: A leg of a Stewart platform
-revisited

The point Pi in {B0}

B0pi =
B0
P0
[R]P0pi +

B0 t
(40)

where P0pi = (pix ,piy ,0)
T .

Denoting point Bi by B0Bi ,
the leg vector B0Si is

B0Si =
B0
P0
[R]P0pi +

B0 t−B0 bi
(41)

where B0bi = (bix ,biy ,0)
T .
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DK OF 6–6 CONFIGURATION IN TASK

SPACE

The magnitude of the leg vector is

l2i = (r11pix + r12piy + tx −bix )
2+(r21pix + r22piy + ty −biy )

2

+(r31pix + r32piy + tz −biz )
2 (42)

Using properties of the elements rij , get

(t2x + t2y + t2z )+2pix (r11tx + r21ty + r31tz )+2piy (r12tx + r22ty + r32tz )

−2bix (tx +pix r11+piy r12)−2biy (ty +pix r21+piy r22)

+b2
ix +b2

iy +p2
ix +p2

iy − l2i = 0 (43)

For six legs, i = 1, ...,6, six equations of type shown above.
Additional 3 constraints

r2
11+ r2

21+ r2
31 = 1

r2
12+ r2

22+ r2
32 = 1 (44)

r11r12+ r21r22+ r31r32 = 0
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DK OF 6–6 CONFIGURATION IN TASK

SPACE

Equations (43) and (44) are nine quadratic equations in
nine unknowns, tx , ty , tz , r11, r12, r21, r22, r31, and r32 (see
Dasgupta and Mruthyunjaya, 1994)
All quadratic terms in equation (43) are square of the
magnitude of the translation vector (t2

x + t2
y + t2

z ), and as X
and Y component of the vector B0t, (r11tx + r21ty + r31tz)
and (r12tx + r22ty + r32tz), respectively.
Reduce 9 quadratics to 6 quadratic and 3 linear equations
in nine unknowns → Starting point of elimination.
Very hard to eliminate 8 variables from 9 equations to
arrive at a univariate polynomial in one unknown.
Univariate polynomial widely accepted to be of 40th degree
(Raghavan, 1993 & Husty, 1996).
Continuing attempts to obtain simplest explicit expressions
for co-efficients of 40th-degree polynomial.
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SUMMARY

Gough-Stewart platform – Most important parallel
manipulator (see also Module 10, Lecture 2).
Most often a symmetric version (also called Semi-Regular
Stewart Platform Manipulator – SRSPM) is used.
Extensively used and studied.
Direct kinematics of 3−3 and 6−3 well understood.
6−6 configuration still being studied for simplest direct
kinematics equations.
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