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© LECTURE 1

@ Introduction
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INTRODUCTION

@ Parallel manipulators: One or more loops — No first or last
link.

@ No natural choice of end-effector or output link — Output
link must be chosen.

@ Number of joints is more than the degree-of-freedom —
Several joints are not actuated.

@ Un-actuated or passive joints can be
multi-degree-of-freedom joints.

@ Two main problems: Direct Kinematics and Inverse
Kinematics.
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EXAMPLES OF PARALLEL ROBOTS

X,
7

O

Figure 1: Planar 4-bar Mechanism
@ One-degree-of-freedom mechanism with 4 joints — Very
well known.
@ Link 2 is called coupler and is the typical output link.
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EXAMPLES OF PARALLEL ROBOTS

P(z,y,2) Moving Platform

U . @ 9 joints only three P joints
actuated.

Axis of By e Top (moving) platform is
the output link.

., 0
i 3

’/ \
] '
( Base Pla ’

Axis of Ry

o Multi-degree-of-freedom
spherical(S) joints are
passive.

Axis of Ry

Figure 2: Three-degree-of-freedom
Parallel Manipulator
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EXAMPLES OF PARALLEL ROBOTS

Figure 3: Original Stewart platform (1965)
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EXAMPLES OF PARALLEL ROBOTS

@ Three fingers
modeled a R-R-R
chain.

o Fingers gripping an
object with point
contact and no slip.

@ Point contact
modeled with S
joint.

@ Object (output link)
is an equilateral
triangle.

@ Three DOF, 12
X joints.

Figure 4: Model of a three-fingered hand
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APPLICATIONS OF PARALLEL
ROBOTS

Industrial manufacturing

machine

Physik Instrumetente
http://www.physikinstrumente.com

Precise alignment of
i mirror
ROb*‘fgsﬁjltgeﬁl: Some uses of Gough-Stewart platform
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DEGREES OF FREEDOM (DOF)

@ Griibler-Kutzbach's criterion

J
DOF =A(N—J-1)+)Y Fi (1)
i=1
N — Total number of links including the fixed link (or base),
J — Total number of joints connecting only two links (if
joint connects three links then it must be counted as two
joints),
F; — Degrees of freedom at the it joint, and
A = 6 for spatial, 3 for planar manipulators and
mechanisms.
@ 4-bar mechanism — N =4, J =4,
Y. Fi=1+1+14+1=4,1=3 - DOF=1.
@ 3-RPS manipulator - N =38, J =09,
Y,  FF=6x1+3x3=15 1=6 — DOF =3.
@ Three-fingered hand - N =11, J =12,
Y,  FF=9+9=18 A =6 — DOF =6.
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DEGREES OF FREEDOM (CONTD.)

@ DOF — The number of independent actuators.
@ In parallel manipulators, J > DOF — J— DOF joints are
passive.

o Example: 4-bar mechanism, J =4 and DOF =1 — Only
one joint is actuated and three are passive.

o Example: 3-RPS manipulator, J=9 and DOF =3 — 6
joints are passive.

@ Passive joints can be multi-degree-of-freedom joints.

o In 3-RPS manipulator, three-degree-of-freedom spherical
(S) joints are passive.
o In a Stewart platform, the S and U joints are passive.

e Configuration space q = (6,9¢)

o 0 are actuated joints & 6 € R" (n= DOF)
e ¢ is the set of passive joints & ¢ € R™

e All passive joints ¢ ¢ = (n+m) < J
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OUTLINE

© LECTURE 1

@ Loop-closure Constraint Equations
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LOOP-CLOSURE CONSTRAINT
EQUATIONS

@ m passive joint variables — m Independent equations
required to solve for ¢ for given n actuated variable,

9,', = 1,2,...,/1.
@ General approach to derive m loop-closure constraint
equations

@ 'Break’ parallel manipulator into 2 or more serial
manipulators,

© Determine D-H parameters for serial chains and obtain
position and orientation of the ‘Break’ for each chain,

@ Use joint constraint (see Module 2, Lecture 2) at the
‘Break(s)' to re-join (close) the parallel manipulator.

@ Trick is to ‘break’ such that

@ The number of passive variables m is least, and
© Minimum number of constraint equations,
ni(q) =0,i=1,...,m are used.
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CONSTRAINT EQUATIONS — 4-BAR
EXAMPLE

XL
77777

O, Oy

Figure 6: The four-bar mechanism

@ One loop — Fixed frames {L} and {R}, {R} is translated
by Iy along the X— axis.

o {1}, {2}, {3}, and {Tool} are as shown. Note only X
shown for convenience.

@ The sequence O;-01-05-03-O140; can be thought of as a
planar 3R manipulator
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CONSTRAINT EQUATIONS — 4-BAR
EXAMPLE

@ D-H parameters of the planar 3R manipulator are
il ooy | ai—1 | di | 6
1] 0 0 | 0|6
21 0 L | 0| ¢
3/ 0 L | 0] ¢s3
e From D-H table find 3[T] (See Slide # 51, Lecture 3,
Module 2)
o For planar 3R and tool of length /5, find 3. [ T].
o [ool[T] is given

—cos¢; —sing; 0 O

Tool;r1_ | Sin¢1  —cosgr 0 0
U 0 0 10
0 0 01

ASHITAVA GHOSAL (IISC) NPTEL, 2010 15 /80



CONSTRAINT EQUATIONS — 4-BAR
EXAMPLE

@ The loop-closure equations for the four-bar mechanism is
I TBITBI T eul TIE[T] = &IT]
@ Planar loop — Only 3 independent equations
/1 cos O + /2 COS(91 + (Pz) + /3 COS(91 =+ (Pg + ¢3) = /0

lisin6; + hsin(6;+ ¢2) + Bsin(61+¢2+¢3) = 0
01+ @2+ 3+ (m—¢1) =4n (2)

@ Loop-closure equations: all four joint variables present.
e q= (917¢1a¢2a¢3)-
o The actuated joint 6 = 6;.
o The passive joints ¢ = (1, P2, ¢3).

@ In this approach n=1, m=3 and J=4.
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CONSTRAINT EQUATIONS (CONTD.)

o Difficulties in multiplying 4 x 4 matrices and obtaining
constraint equations:
@ Presence of multi-degree-of-freedom spherical (S) and
Hooke (U) joints in a loop.
@ Obtaining independent loops in the presence of several
loops.

@ Represent multi-degree-of-freedom joint by two or more
one-degree-of-freedom joints and obtain an equivalent 4 x 4
transformation matrix.

@ Obtaining independent loops not easy in this way!
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CONSTRAINT EQUATIONS (CONTD.)

o Each leg is U-P-S chain, A =6, N =14, J=18,
Y, ,F =36 — DOF =6.
@ 6 P joints actuated — 30 passive variables.

@ Many loops — For example, 5 of
the form
Bi — Pi— Pit+1— Bit1—B;,
i=1,..,5, 4 of the form
Bj — Pi = Piy2 — Bit2 — B,
i=1,..,4, and 3 of the form
Bi — Pj— Pi13—Bi3— B,
i=1,23.

@ Each of the 12 loops can have
(potentially) 6 independent
equations — Which 30 equations
to choose?!

Figure 7: The Stewart-Gough

latform
NPTEL, 2010
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4-BAR EXAMPLE REVISITED

Breaking at Joint 3
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4-BAR EXAMPLE REVISITED

@ Alternate way: ‘break’ loop at third joint (figure 8(a)).
o One planar 2R manipulator + one planar 1R manipulator.
o Obtain D-H tables for both (see Slide # 62, Lecture 3,
Module 2)
o Easy to obtain L[T], 3[T] & R[T].
o Using h and /3, obtain &, _,[T] and & ,[T].
o From L ,[T] extract X and Y components of p

x=hcosOy+ hcos(01+ ¢2), y=hsinO;+ hsin(6;+ ¢2)
o From & [T], extract vector Rp to get
x=hcos¢, y=Hhsing;
@ Use constraint for R joint (Slide # 30, Lecture 2, Module
2)
x = h cos 61 + kb cos(61 + ¢2) lo + l cos ¢
y=hsin6; + hsin(61+¢2) = hsingg (3)
lo is the distance along the X — axis between {L} and {R}.

@ In this case only two constraint equation: q = (61, ¢1, ¢2) —
NPTEL, 2010 20/80



4-BAR EXAMPLE REVISITED

Another way is to ‘break’ the second link (see figure 8(b)).
Two planar 2R manipulators

Obtain the X and Y components of Lp as

x=1lcos6;+a cos(61+¢2), y=Hhsin6+a sin(61+ @)

Likewise X and Y components of Rp are

x=/hcosgr+b cos(¢r+¢3), y=hsingy+b sin(¢+¢3)

where h, = a+ b and the angle ¢35 is as shown in figure 8(b).

@ Impose the constraint that the broken link is actually rigid
x=lcos6;+a cos(61+¢2) = lo+hcosgr+b cos(¢r+ ¢3)

y= lisinB; +a sin(@l + ¢2) = ksin 01+ b sin(¢1 -+ ¢3)
Or+¢2 = d1+¢3+7 (4)

e Similar to equation (2) —n=1, m=3and J=4

ASHITAVA GHOSAL (IISC) NPTEL, 2010 21/80



4-BAR EXAMPLE REVISITED

@ Yet another way to ‘break’ loop is shown in figure 8(c).

@ Obtain tp and Rp as
Lp = (/1 C0591,/1 sin 91)T, Rp = (/3COS(P1,/3Sin ¢1)T

@ Enforce the constraint of constant length  to obtain

N1(01,¢1) = (hcosBy — o — /3COS(])1)2 + (hsin6; — I3sin¢1)2 — /22 =0
(5)

This constraint is analogue of S — S pair constraint (see

Slide # 34, Lecture 2, Module 2) for planar R — R pair.

@ Only one constraint equation! —q=(61,¢1), n=m=1%&
J=4

LIn the four-bar kinematics this is the well known Freudenstein's
equation (see Freudenstein, 1954).
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TwWO PROBLEMS IN KINEMATICS OF
PARALLEL MANIPULATORS

@ Direct Kinematics Problem: Two-part problem
statement
o Step 1. Given the geometry of the manipulator and the
actuated joint variables, obtain passive joint variables.
o Step 2: Obtain position and orientation of a chosen
output link.

@ Much harder than DK problem for a serial manipulator.
@ Leads to the notion of mobility and assemble-ability of a
parallel manipulator or a closed-loop mechanism.
@ Inverse Kinematics Problem:
Given the geometry of the manipulator and the position
and orientation of the chosen end-effector or output link,
obtain the actuated and passive joint variables.
o Simpler than direct kinematics problem.
o Generally simpler than IK of serial manipulators.
o Often done in parallel — One of the origins for the term

arallel” in parallel manipulators.
NPTEL, 2010 23780



SUMMARY

@ Parallel manipulators: one or more loops & and no natural
choice of end-effector.

e Parallel manipulator — Number of actuated joints less than
total number of joints.

@ Degree-of-freedom is less than total number of joints.

e Configuration space of parallel manipulator q = (6,¢) -
Dimension of q chosen as small as possible.

@ Actuated variables — 6 € R", Passive variables — ¢ R™

@ Need to derive m constraint equations.

Two problems — Direct kinematics and inverse kinematics.
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OUTLINE

© LECTURE 2

@ Direct Kinematics of Parallel Manipulators

ASHITAVA GHOSAL (IISC)




DIRECT KINEMATICS OF PARALLEL
MANIPULATORS

@ The link dimensions and other geometrical parameters are
known.

@ The values of the n actuated joints are known.
@ First obtain m passive joint variables.
o Obtain (minimal) m loop-closure constraint equations in m
passive and n active joint variables.
o Use elimination theory/Sylvester's dialytic
method/Bézout’s method (see Module 3, Lecture 4)
o Solve set of m non-linear equations, if possible, in
closed-form for the passive joint variables ¢;, i=1,..,m

@ Obtain position and orientation of chosen output link from
known 6 and ¢ — Recall no natural end-effector and hence
have to be chosen!

@ No general method as compared to the direct kinematics of
serial manipulator — Approach illustrated with three
examples.
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PLANAR 4-BAR MECHANISM

777

O, Oy N
X ool

Figure 9: The four-bar mechanism - revisited

@ Simplest possible closed-loop mechanism and studied
extensively (see, for example Uicker et al., 2003).

@ A good example to illustrate all steps in kinematics of
parallel manipulators!

@ Simple loop-closure equations — All steps can be by hand!
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4-BAR — LOOP-CLOSURE EQUATIONS
@ From loop-closure equations (4) (see Figure 8(b)),
x—lo=hcosg; —bcos(01+¢2), y=»hsing;—bsin(61+ )
@ Denote 6 = 01 + ¢, squaring and adding
Aicosé+ Bysind+C; =0 (6)

where A1 =X— /0, Bl =Y,
C1=(1/2b)[(x — Ip)? + y? + b*> — I2]
@ From the first part of two equation (4)

x =l cosB; +acos(01+ ¢2), y=hsinB;+ asin(61+ @)
@ Squaring, adding, and after simplification gives
Ascosd + Brsind+Co =0 (7)

where Ay = x, By =y, G = (1/2a)[/? — a* — x> — y?]
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4-BAR MECHANISM — ELIMINATION

e Convert equations (6) and (7) to quadratics by tangent
half-angle substitutions (see Module 3, Lecture 4)

e Following Sylvester's dialytic elimination method (see
Module 3, Lecture 4), det[SM] =0 gives

(AlBQ — A281)2 = (Al G — A C1)2 + (Bl G — BQC1)2

and § = —2tan! ( A1Go—ACi )

(B1Co—B2C1)+(A1B2—AzBy)
o det[SM] =0, after some simplification, gives
42°b%p?y? = [b(x — ) (1} — a® — x> — y?) —
ax{(x—h)*+y*+ b~ E}*+ (8)
Vbl =@ =x*—y) —al(x—h)* +y* + 6"~ 5}°

2

Above sixth-degree curve is the coupler curve

2The coupler curve is extensively studied in kinematics of mechanisms.
For a more general form of the coupler curve and its interesting properties,
see Chapter 6 of Hartenberg and Denavit (1964).
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4-BAR — SOLUTION FOR PASSIVE
JOINT VARIABLES

@ The elimination procedure gives § as a function of (x,y)
and the link lengths.

@ Since 6, is given,

¢2:5—91:—2tan1< Al —AG )>—01

(31C2 — BzCl)-l-(Ale —AzBl( )
9

@ The angle ¢; can be obtained from equation (5).

/g+/12+/§ — /22 = COS¢1(2/1/3C0591 —2/0/3)-|-sin ¢1(2/1/3)
(10)

o Finally, ¢3 can be solved from the third equation in
equation (4)

p3=01+¢p2—¢1—7 (11)
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4-BAR — NUMERICAL EXAMPLE

@ lp=5.0, L=1.0, b =3.0, and 5 =4.0 — The input link
rotates fully (Grashof's criteria)

@ Figure 10(a) shows plot of ¢; vs 6; — Both set of values
plotted.

@ From ¢; obtain ¢, and ¢35 — Two coupler curves shown.

(a) ¢1 vs 01 for 4-bar mechanism (b) Coupler curves for 4-bar mechanism

Figure 10: Numerical example for a 4-bar
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A THREE DOF PARALLEL
MANIPULATOR

D-H Table for a R-P-S leg (see
Module 2, Lecture 2, Slide #
64)

i | Q-1 |ai-1 | di | 6
1 0 0 016,
x|l 0 |hlo

All legs are same.

01, 1 =1,2,3 are passive
variables.

li, i=1,2,3 are actuated
variables.

Figure 11: The 3-RPS parallel
manipulator — Revisited
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3-DOF EXAMPLE — LOOP-CLOSURE

EQUATIONS
@ Position vectors of three S joints (see Module 2, Lecture 2,
Slide # 65)
Baseg, = (b—/cos6y,0,lsin6y)" (12)
Baseg, — (—g + %Izcoseg, ?b— ?lgcoseg,lzsin )"
Bases3 = (—g + %/3C0593,—?b+ ?/3C0593,/3Sin 93)T
Base an equilateral triangle circumscribed by circle of
radius b.
@ Impose S — S pair constraint (see Module 2, Lecture 2,
Slide # 34)
nl(/1,91,/2,92) _ ‘(Basesl _ Base 52)‘2 _ k%z
Mok, 02,15,03) = |(B2eSy—Baes3)|2 = k3,
n3(ls,03,h,01) = [(P°°S3 B 81))2 = k3, (13)
@ S joint variables do not appear — Due to S — S pair
equations!

ASHITAVA GHOSAL (IISC) NPTEL, 2010
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3-DOF EXAMPLE — ELIMINATION

@ Assume b=1 and ky» = koz = k31 = V/3a.

o Eliminate using Sylvester's dialytic method (see Module 3,
Lecture 4), 6; from m1(-) =0 and n3(-) =0

Na(h, b, k,02,63) =

(A1C2 —A2C1)2—|—(Bl G — BQC1)2 — (AlBQ —A281)2 =0

where
G = 3—332-|-/f-|-/22—3/2C27 Ai=hbcy—3h, By =—-2hhs
G = 3*332+/f+/§*3/3C3, Ar =hlecz —3h, Bo=—-2hhks3

e Eliminate 6, from n4(-) =0 and n2(-) =0, with
x3 = tan(63/2).

a3(3)°+a7(3) + ..+ () +q=0  (14)

An eight degree polynomial in x3.

ASHITAVA GHOSAL (IISC) NPTEL, 2010
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3-DOF EXAMPLE — ELIMINATION

o Expressions for g; obtained using symbolic algebra
software, MAPLEYY, are very large. Two smaller ones are

gs = (poa’+p1a®+p2a®+psa+ps)(poa® — p1a® +p2a® — psa+pa)?
go = (r0a4+r1a3+r2a2+r3a+r4)2(r0a4—rla3+r2a2—r3a+r4)2

where rp = pg = -9, n =12(5—3), p1 =12(k +3),

rp=3(12 + 12 — I3(}5 — 10) — 15), po = 3(/2 + 12 — 13(/3 +10) — 15),
r3=—2(=3)(Z+5+13-3), ps=—2(+3)(F+Z+5-3),
ra =15 —8I3+312+1813 —255(I13 +6) — [2(I2 +2/3—3), and

pa =I5 +8I5+313+1812 +25(/3 +6)+ 12(/3 +2/5 —3)

@ 8 possible values of 65 for given a and actuated variables

(l17/27/3)T-
@ Once 63 is obtained, 6, obtained from 12(-) =0 and 6;
from n3(-) = 0.
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3-DOF EXAMPLE (CONTD.)

e A natural output link is the moving platform.
@ Position and orientation of the moving platform:
o Centroid of moving platform,

1
Basep _ 5(Bases1 _,'_Base 52 _,'_Base 53) (15)

e Orientation of moving platform or ’f-g;e[R] is

Base [R] o Basesl_BaseS2 A~ (BasesliBasesz)X(BasesliBases?’)
Top - ‘Basesl_Baseszl |(Basesl_BaseSZ)X(Basesl_Bases3)‘

(16)
where Y is obtained from the cross-product of the third
and first columns.

@ Once /;,6; i =1,2,3 are known B2*¢p and %;;e[R] can be
found.

@ Key step was the elimination of passive variables and
obtaining a single equation in one passive variable!
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3-DOF EXAMPLE - NUMERICAL
EXAMPLE

@ Polynomial in equation (14) is eight degree in (tan63/2).

@ Not possible to obtain closed-form expressions for 6y, 05,
and 6.
@ Numerical solution using Matlab®
e Fora=1/2, and for h =2/3, h=3/5and 5 =3/4
o Two sets values 83 = +0.8111, +0.8028 radians.
o For the positive values of 05, 8, = 0.4809, 0.2851 radians
and 6; =0.7471, 0.7593 radians respectively.
o For the set (0.7471,0.4800,0.8111),
Basep — (0.0117, —0.0044,0.4248) 7, and
° The rotation matrix Tose[R] is given by

Top

0.8602  0.5069 —0.0564
Base|R]= [ —0.4681 0.8285  0.3074

0.2026 —0.2380 0.9499

ASHITAVA GHOSAL (IISC) NPTEL, 2010
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6-DOF EXAMPLE — D-H
PARAMETERS

@ D-H parameters for
R-R-R-S chain (see

Module 2, Lecture 2,

Slide # 67).
i o1 | a1 |di| 6
1 0 0 01| 6
2 7'L'/2 /11 0 {41
3|/ 0 ho | 0| ¢1

@ D-H parameters for

fingers in

(F}, i=1,2,3

identical.

@ 6DOF parallel

Figure 12: 3-RRRS parallel manipulator — manIPU|ator - Only 6
Revisited out of 12 6;, y;, ¢; are

actuated.
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6-DOF EXAMPLE — LOOP-CLOSURE
EQUATIONS

@ Position vector of spherical joint i
cos 9,'(/,'1 4+ 5 cos Vi + Ii3 COS( Wi+ (P,))
Fip; = ( sin 0; (/i1 + li2 cos Y + I3 cos(y; + 9;)) )
liasiny; + lizsin(y; + ¢;)

e With respect to {Base}, the locations of {F;}, i=1,2,3,
are known and constant 52¢b; = (0, —d,h)7, Baseh, =
(0,d,h)T, Baseb3 =(0,0,0)7.

o Orientation of {F;}, i =1,2,3, with respect to {Base} are
also known - {F;} and {F} are parallel to {Base} and
{Fs} is rotated by 7 about the Y.

@ The transformation matrices 57%¢[T] is
Efse[T]g[T]%[T]g[T]?,l[T] — Last transformation includes
h3.
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6-DOF EXAMPLE — LOOP-CLOSURE
EQUATIONS

o Extract position vector 2¢p; from last column of ,’?fse[T]
Basep1 __Base bl +F1 p1=
( cos 01 (h1 + hacosy1 + hzcos(y1 + 1)) )
—d +sin 91(/11 + ho cos Y1+ h3 COS(I]/l + ¢1))
h+ hasinyy + hzsin(yy + ¢1)
@ Similarly for second leg
( cos 02( b1 + ha cos Yo + bz cos(ya + ¢2)) )
Baseny = | d+sinBs(hy + by cos Yo + bz cos(wa + ¢2))
h+ hasinya + basin(yz + ¢2)
o For third leg Bas¢p; =
A cos 03( /31 + h2 cos w3 + 3 cos(y3 + ¢3))
[R(Y,’}/)] sin 93(/31—|-/32 cos Y3 + 33 COS(I[/3+¢3))
Ko sin Y3+ k3 sin(l//3 + ¢3)

ASHITAVA GHOSAL (IISC) NPTEL, 2010
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6-DOF EXAMPLE — LOOP-CLOSURE
EQUATIONS

@ Use S — S pair constraint to get 3 loop-closure equations.

n1(613W1a¢17927W23¢2) = |Basep1 —Base p2|2 = k%Q
M2(62, Y2, 02,63, Y3, 03) = |P2°°pa =2 p3? = k35 (17)
n3(937 V/37¢3»9171I/1a¢1) = |Basep3 —Base p1|2 = k??l

where ki, k>3 and k31 are constants.

@ Actuated: 61,y1, 02,yn, 03, W3 & Passive: ¢1, @2, ¢3.

@ Obtain expressions for passive variables using elimination.

e Eliminate ¢; from first and third equation (17)—
N4(92,93,-,-) =0.

o Eliminate ¢» from n4(¢2,¢3,-,-) = 0 and second
equation (17) — Single equation in ¢s.

o Final equation is 16™ degree polynomial in tan(¢3/2) —
Obtained using symbolic algebra software MAPLE® .

@ Expressions for the coefficients of the polynomial very long!
— Numerical example shown next.
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6-DOF EXAMPLE — NUMERICAL
RESULTS
o Assume d =1/2, h=+/3/2, [1 =1, [ =1/2, I3 =1/4
(f = 1,2,3), Y= 7'L'/4 and k12 = k23 = k13 = \/§/2
@ For the actuated joint variables, choose 6; = 0.1,
Y1 = —1.0, 92 = 0.]., Yo = —1.2, 93 = 03, Y3 = 1.0

radians.
@ The sixteenth degree polynomial is obtained as
0.00012¢3% —  0.00182¢35 +0.01376¢3* — 0.05230¢33 + 0.13148t32

— 0.24391t31 +0.35247¢3° — 0.40965¢3 +0.386961t5
— 0.29811t] 4-0.18502t5 — 0.09104¢3 +0.03433t3
— 0.00968t3 +0.002015 — 0.00037t3 -+ 0.00006 = 0

where t3 =tan(¢3/2).

@ Numerical solution gives two real values of ¢3 as
(0.8831,1.8239) radians.

e Corresponding values of ¢; and ¢, are (0.3679,0.1146)
radians and (1.4548,1.0448) radians, respectively.
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6-DOF EXAMPLE — NUMERICAL
RESULTS

@ The position vector of centroid, computed as in the 3-RPS
example, using the first set of 6;, y;, ¢; is

Basep, (Base 1 +Basep, 1-Base po) — (1.3768,0.2624,0.1401) "

Base

@ The rotation matrix Obrect

3-RPS example, is

[R], computed similar to the

0.0306  0.2099 —0.9773
obeR1=( —0.9811 0.1806  0.0695
0.1910 —0.9609  0.2004
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@ Mobility of Parallel Manipulators
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MOBILITY OF PARALLEL
MANIPULATORS

@ Concept of workspace in serial manipulators — All
(x,y,z;[R]) such that real solutions for the inverse
kinematics exists.

@ In parallel manipulators two concepts: mobility and
workspace.

o Workspace dependent on the choice of output link.

o Mobility: range of possible motion of the actuated joints in
a parallel manipulator.

o Mobility is more important in parallel manipulators!

@ Mobility is determined by geometry/linkage dimensions —
Loop-closure constraint equations.

@ Mobility is related to the ability to assemble a parallel
manipulator at a configuration.
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MOBILITY OF PARALLEL
MANIPULATORS

@ Mobility: All values of actuated variables such that real
value(s) of passive variables exists — Determined by direct
kinematics.

@ No real value of passive variable = Cannot be assembled.

@ Mobility — Obtain conditions for existence of real solutions
for the polynomial in one passive variable obtained after
elimination.

o Very few parallel manipulators where the direct kinematics
can be reduced to the solution of a univariate polynomial
of degree 4 or less.

@ In most cases mobility determined numerically using search.

@ In 4-bar mechanism, mobility can be obtained in
closed-form.
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MOBILITY OF 4-BAR MECHANISM 1554

@ Loop-closure constraint equation of a 4-bar
N1(61,¢1) = (hcos O — lo— l3cos ¢1)> + (L sin B — singr)* — 12 =0
@ On simplification 111 becomes
Pcos¢y + Qsing1 + R=0 (18)
where P, @, and R are given by
P = 2yl —2hkec, Q@ =—2hhs;
R = B+F+5-5-2bha
lo, h, kb, and 5 are the link lengths (see figure 6), and ¢,

sy are the sine and cosine of 6, respectively.
e Using tangent half-angle substitutions (see Module 3,

Lecture 3)
_O0+VP2Lr02_R2
¢ =2tan"! ( Q RP_—;Q R ) (19)
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MOBILITY OF 4-BAR MECHANISM

e Forreal ¢, P2+ Q*—R2>0
e Limiting case: P4 Q% — R?> =0 — Two ¢;'s coinciding.
@ In the limiting case, the bounds on 6; are

_B+R-B-BL2hh

2k (20)

1

e For full rotatability of 61(0 < 6, < 2m), 61 cannot have any
bounds.

o For 6; to have full rotatability there cannot be a solution
to equation (20)!

o For full rotatability of 61, ¢ >1or c; < —1in
equation (20)
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MOBILITY OF 4-BAR MECHANISM

@ For full rotatability/mobility of 6y, first ¢; be real and then
0, be imaginary. —> Note the order of ¢; and 6.
@ The condition ¢; > 1 and ¢; < —1 leads to

(/0—/1)2 > (/3—/2)2 (21)
and
(o+h) <(h+h) (22)
@ Two additional conditions from ¢; > 1, ¢; < —1 lead to
B+h+h <lyand h+h+h < 5 — Violates triangle
inequality.
e Equation (21) gives rise to four inequalities

/0—/1 > /3—/2

/0 - /1 > /2 — /3
/1 — /0 > /3 — /2 (23)
/1 — /0 > /2 — /3
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MOBILITY OF 4-BAR MECHANISM

@ For the case of ; < Iy

bh+bh > h+h
b+h > h+h (24)

e Equations (22) and (24) imply that ly, /» and 5 are all
larger than h.

e Equations (22) and (24)— /+s<p+q —s, | are the
shortest and largest links and p, g are intermediate links.

o Likewise, for 1 > Iy
/1 —+ /2 > /0 + /3
h+h > lh+h (25)

and again Iy is the shortest link.

e Concisely represent equations (22) and (25) as /+s<p+gq
— Same as the Grashof's criterion for 4-bar linkages.
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3-DOF PARALLEL MANIPULATOR

@ Three-DOF
parallel (3-RPS)
manipulator —
Polynomial is
eight degree in
2

e a=0.5and
(/1, /2, /3) S
[0.5, 1.5].

@ Points marked as
*'" — No real and
positive values of

2
X3.

05 05

|
2 I

@ Finer search — Figure 13: Values of (i, /o, Js) for imaginary 8
igure H alues O s 12y or Imaginar’
More accurate (n';garked by ) vs ginany =

mobility region.
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SUMMARY

@ Mobility in parallel manipulators is analogous to
workspace? in serial manipulators.

@ Actuated joint motion can be restricted and not due to
joint limits!

@ Mobility of actuated joints determines if an parallel
manipulator/mechanism can be assembled in a
configuration.

@ If no real solution to direct kinematics problem — Not
possible to assemble.

@ Analytical solution for mobility of a 4-bar mechanism yields
the well-known Grashof criterion.

o Difficult to find mobility analytically for other
manipulators/mechanisms.

@ Numerical search based approach can be used.

3Some authors use mobilty in the same sense as degree-of-freedom!
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@ Inverse Kinematics of Parallel Manipulators
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INVERSE KINEMATICS OF PARALLEL
MANIPULATORS

@ Problem statement: given

o geometry and link parameters,
e position and orientation of a chosen output link with
respect to a fixed frame,

Find the joint (actuated and passive) joint variables.

@ Simpler than the direct kinematics problem since no need
to worry about the multiple loops or the loop-closure
constraint equations.

o Key idea is to ‘break’ the mechanism into serial chains and
obtain the joint angles of each chain in ‘parallel’.

@ Break parallel manipulators into chains such that no chain
is redundant.

@ Worst case: Solution of inverse kinematics of a general 6R
serial manipulator (See Module 3, Lecture 4).

ASHITAVA GHOSAL (IISC) NPTEL, 2010 54/80



PLANAR 4-BAR MECHANISM

@ Coupler is the
chosen output link.

Given the position of
a point tp and the
rotation matrix 5[R]
of the coupler link.

Planar case — x,y
coordinates and the
orientation angle ¢
given.

lo

Figure 14: Inverse kinematics of a four-bar o Lengths /0, /1,
mechanism /2 = a+ b, a, b and
3 are known.
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PLANAR 4-BAR MECHANISM

o We have
x =l cosB; +acos(61+ ¢2), y=hsin6;+ asin(6;+ @)

where x and y are known.
@ The angle ¢ denoting the orientation of link 2 is given by

¢=61+¢—2m
@ Solve for 6; and ¢, as
01 = atan2(y — asing, x —acos@), @ =¢ —6;

@ In a similar manner, considering the equations

x = ly+hcosd+ bcos(¢r+ ¢3), y = Bsing; + bsin(¢1 + ¢3)
O = ¢p1+¢3—7

solve for ¢ and ¢3.
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PLANAR 4-BAR MECHANISM

@ ¢ obtained as 0; + ¢> — 27 and as ¢; + ¢3 — T must be
same.

@ The four-bar mechanism is a one- degree-of-freedom
mechanism and only one of (x,y,¢) can be independent.
o x and y are related through the sixth-degree coupler curve

(see equation (8))
e ¢ must satisfy

xcos@ +ysing = (1/2a)(x* 4+ y> —a> — I?)

@ The constraints on the given position and orientation of
the chosen output link, x,y, ¢, are analogous to the case of
the inverse kinematics of serial manipulators when n < 6
(see Module 3, Lecture 3).

@ The inverse kinematics of a four-bar mechanism can be
solved when the given position and orientation is consistent.
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A 6-DOF PARALLEL MANIPULATOR

@ Figure shows one
‘finger’ as an RRRS
chain.

@ Given the position and
orientation of the
‘gripped’ object with
respect to {Base}.

@ Obtain the rotations at
the nine joints in the
three ‘fingers’.

Figure 15: Inverse kinematics of six-
degree-of-freedom parallel manipulator
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INVERSE KINEMATICS OF 6-DOF
PARALLEL MANIPULATOR

@ Vector B2¢p |ocates the centroid of the gripped object.

Base . .
o Siec[Rlis also available.

@ In {Object}, the location of S, Objectg, "is known. Hence,
(X,y,Z)T __Base sl — g?;j':ct[R]ObJeCtsl +Base PObject is
known.

@ From above

; cos 01 (/1 + hacosyy + hzcos(w1 + ¢1))
(x.y,2)" = (26)

—d +sin 91(/11 + l1o cos v+ /13 COS(I[/l + ¢1))
h+hasinyy + hzsin(y1 + ¢1)

e Equation (26) can be solved for 61, y; and ¢; using
elimination (see Module 3, Lecture 4) from known
(x,y,2)7.
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6-DOF PARALLEL MANIPULATOR
(CONTD.)

e From equation (26), we get

X+ (y+d)P+(z—h?=
12, + 12 4 123 + 2l 1 o cos yy
+2hoh3cos @y +2h1hscos(y1+¢1)  (27)

e Equation (27) and last equation in (26) can be written as
A,’COSI[/1+B,'Sinl//1+C,':0, i=1,2 (28)
where

A1 = 2hi1ha+2hi1hzcos¢r, Az = lh3sing;
C1 = /121+/122+/123+2/12l13cos¢1—x2—(y+d)2—(z—h)2
By = —2h1h3zsin ¢, Br= ho+ h3 cosp;, G = h—z
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6-DOF PARALLEL MANIPULATOR
(CONTD.)

o Following Sylvester's dialytic method, eliminate y; to get
412, (12 + 125+ 2hahzcos 1) = C2 + 412 (h— z)?
e Using tangent half-angle formulas for cos¢; and sin ¢, we
get a quartic equation
asx* +a3x3 + ax’ +aix+ap=0 (29)

where x = tan(¢1/2).
@ Solve for ¢; from the quartic and obtain y; as

_ AiG—-AG
= —2tan"" 30
& o <(31C2—32C1)+(A152—A231)> (30)

o Finally, 0; is obtained from
01 = atan2(y + d, x) (31)

@ The joint variables for the other two fingers can be

obtained in same way!
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IK OF GOUGH-STEWART PLATFORM

e From Figure 16, an
arbitrary platform point P;
can be written in {Bp} as

B Poyy. | B
op; = [R]Pop; ot
(32)
e The Pop; is a known
constant vector in {Pgp}.
@ The location of the base
connection points Bop; are
known.

U Joint

Figure 16: A leg of a Stewart platform
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IK OF GOUGH-STEWART PLATFORM
e From known gg[R] and translation vector Bot, obtain Zop;

[REZ T (xy,2)" =% b1) = [ROY,0)IR(X, v)](0,0, /)"
( sin ¢ cos Yy )
= /1 —sinl//l (33)
Cos (1 Cos Y

where Bop; is denoted by (x,y,z)".
@ Three non-linear equations in /1, Y1, ¢ — solution

ho= £/[(y.2)T ~Boby)?
y; = atan2(—Y,£V X2+ Z?) (34)
¢1 = atan2(X/cosyi,Z/cosyq)

wheAre X,Y,Z are the components of
[R(Z, )] ((x,y,2)T =B by).
@ Perform for each leg to obtain /;, w; and ¢; for i =1,...,6.
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SUMMARY

Inverse kinematics involve obtaining actuated joint

variables given chosen end-effector position and orientation.

@ Key concept is to “break” the parallel manipulator into
“simple” serial chains.

@ Inverse kinematics problem can be solved by considering

each serial chain in parallel.

@ Inverse kinematics of Gough-Stewart platform much
simpler than direct kinematics.

@ In general, inverse kinematics problem simpler for parallel
manipulator!
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OUTLINE

© LECTURE 5
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@ Direct Kinematics of Stewart Platform Manipulators




GOUGH-STEWART PLATFORM
MANIPULATORS

@ Gough-Stewart platform — Six-DOF parallel manipulator.
o Extensively used in flight simulators, machine tools,
force-torque sensors, orienting device etc. (Merlet, 2001).

Note: it is an U Joint Not ut is an U Joint Fixed Bose

(a) 3-3 Stewart platform (b) 6-3 Stewart platform (c) 6—6 Stewart platform

Figure 17: Three configurations of Stewart platform manipulator
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GEOMETRY OF A LEG

@ Hooke (‘U’) joint modeled

as 2 intersecting R joint —
Each leg RRPS chain.

@ Hooke joint equivalent to
successive Euler rotations
(see Module 2, Lecture 2,
Lecture 2) ¢; about Y; and
y; about X;.

U Joint

Figure 18: A leg of a Stewart platform
-revisited
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GEOMETRY OF A LEG (CONTD.)

@ The vector Bop; locating the spherical joint can be written
as

%op; = b+ [R(Z,)]R(Y. 9)IIR(X, wi)](0,0, 1)
cos ¥;sin ¢; cos Wi +sin y;sin y;
= Bob; 1| sinysing;cosy; —cosysiny; (35)
Cos ¢; cos V;

o Constant vector Zob; locates the origin O; {i} at the
Hooke joint i/,

o Constant angle ¥; determines the orientation of {i} with
respect to {By}, and

e [; is the translation of the prismatic (P) joint in leg i.

e Bop; is a function of two passive joint variables, ¢; and ;,
and the actuated joint variable /;.
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DK OF 3—-3 CONFIGURATION

@6 Iegs are Bl — P1, Bl — P3, BQ — Pl, BQ — PQ, B3 — P2 and
B3 — Ps3 (see Figure 17(a)).

@ 6 actuated and 12 passive variables — 12 constraint
equations needed.

@ Three constraints: Distances between Py, P> and P3 are
constant (similar to 3-RPS).

@ Point P; reached in two ways: 3 vector equations or 9
scalar equations.

Poby+B1PL = %by+ByPy
Poby+ByPy = b3+ BsP
Boby+ B3P = 5oby+B1P;

e 16" degree polynomial in tangent half-angle obtained after
elimination (Nanua, Waldron, Murthy, 1990).
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DK OF 6—-3 CONFIGURATION

@ Direct kinematics similar to 3-3 configurations (see
Figure 17(b))

@6 Iegs are Bl — Pl, 82 — Pl, B3 — P2, B4 — P2, B5 — P3 and
Bs — Ps.

@ 6 actuated and 12 passive variables — 12 constraint
equations needed.

@ Three constraints: Distances between P;, P> and Ps are
constant (similar to 3-RPS).

@ P, P> and P;5 reached in two ways — 9 scalar equations

Poby+B1PL = %by+ByPy
Boby+ B3Py = Boby+ B4Ph
Bobs+BsP; = Bobg+ BsP3

o 16™ degree polynomial in tangent half-angle obtained after
elimination.
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DK OF 6—6 CONFIGURATION IN JOINT
SPACE

@ 6 distinct points in the fixed base and moving platform (see
Figure 17(c))

@ Hooke joint modeled as 2 intersecting rotary (R) joint — 6
actuated and 12 passive variables — Need 12 constraint
equations!.

o Bop; revisited

Popi = B+ [R(Z, )[RV, 9)IR(X, y)]1(0,0, 1)
COs ¥; sin @; cos Y; + sin ¥; sin y;
= Bop, 4, siny; sin ¢; cos y; —cosy;siny;  (36)
Cos ¢; Cos Y;

@ 6 constraint equations from S — S pair constraints (see
Module 2, Lecture 2)

ASHITAVA GHOSAL (IISC) NPTEL, 2010

71/80



DK OF 6-6 CONFIGURATION IN JOINT
SPACE

@ 6 S— S pair constraints

m(a) = [*p1—"pf°~d},=0
m(a) = [Pp2—FpsfP—diz=0
m(q) = [Pps—ps®—d5 =0
na(q) = [Pps—ps|®—dis=0 (37)
ns(a) = |%ps—"0pe|* —dZ; =0
ne(a) = |®pe—"pifP—df =0

@ Need another 6 independent constraint equations.
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DK OF 6—6 CONFIGURATION IN JOINT
SPACE

o Distance between point Bop; and Bops, Bop, and Bopg
must be constant

m(q) = |Pop1—Ppsf>—dis=0

ns(q) = [®p1—pa>—di =0

mo(a) = [®p1—"ps|* —dfs =0 (38)
@ All six points P;, i =1,...,6 must lie on a plane
mo(a) = (®p1—"ps)x (%p1—"ps)- (*p1—"p2) =0
mi(a) = (%p1—"2ps)x (Pop1—Fps)-(Fop1 - p3) =0
Mma(q) = (Pp1—"ps)x (%p1 = pe)- (%p1 -2 ps) =0

—

39)

@ djj is the known distance between the spherical joints S;
and §; on the top platform.
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DK OF 6—6 CONFIGURATION IN JOINT
SPACE

@ 12 non-linear equations in twelve passive variables
@i, w;, i=1,...,6, and six actuated joint variables
i, i=1,..,6.

@ All equations do not contain all passive variables — First
equation in (37) is a function of only ¢1, y1, hh, ¢2, y2,
and /2.

@ 12 equations are not unique and one can have other
combinations.

@ For direct kinematics, eliminate 11 passive variables from
these 12 equations.

@ Very hard and not yet done!

@ Direct kinematics of Gough-Stewart platform easier with
task space variables.
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DK OF 6-6 CONFIGURATION IN TASK
SPACE

U Joint

Figure 19: A leg of a Stewart platform
-revisited

ASHITAVA GHOSAL (IISC)

@ The point P; in {By}

%op; = R[RI™p; +%t
(40)
where op; = (p; . p;,,0)7.
e Denoting point B; by 5oB;,
the leg vector BoS; is

Bos; = R [R]Pop;+Bot —Bob,
(41)

where Bob,' = (b,‘x,b O)T.

ly s
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DK OF 6-6 CONFIGURATION IN TASK
SPACE

@ The magnitude of the leg vector is
17 = (rupi +nepi, + t«— bi,)> + (ra1pi, + r2pi, + t, — bi,)?
+(rs1pi, + razpi, + tz — by, )? (42)
@ Using properties of the elements rj;, get
(824 2+ 12) +2p; (n1t + raaty + r31tz) +2p; (raty + raoty + raptz)
—2b; (tx + pi r11 + pi,r12) — 2b; (ty, + pi, ro1 + pj, r22)
+b7 + b} +pi+p; — 17 =0 (43)
o For six legs, i =1,...,6, six equations of type shown above.
e Additional 3 constraints

htratry = 1

2,2 2 _

r12+r22+r32 =1 (44)
nire+rir2+mnirn = 0
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DK OF 6-6 CONFIGURATION IN TASK
SPACE

e Equations (43) and (44) are nine quadratic equations in
nine unknowns, t., t,, t;, ri, na, r1, r2, r31, and r (see
Dasgupta and Mruthyunjaya, 1994)

e All quadratic terms in equation (43) are square of the
magnitude of the translation vector (t2 4 t}% +1t2), and as X
and Y component of the vector Bot, (ri1t, + a1 t, + r31t;)
and (rioty + rot, + r3at;), respectively.

@ Reduce 9 quadratics to 6 quadratic and 3 linear equations
in nine unknowns — Starting point of elimination.

@ Very hard to eliminate 8 variables from 9 equations to
arrive at a univariate polynomial in one unknown.

@ Univariate polynomial widely accepted to be of 40th degree
(Raghavan, 1993 & Husty, 1996).

e Continuing attempts to obtain simplest explicit expressions
for co-efficients of 40th-degree polynomial.
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SUMMARY

o Gough-Stewart platform — Most important parallel
manipulator (see also Module 10, Lecture 2).

@ Most often a symmetric version (also called Semi-Regular
Stewart Platform Manipulator — SRSPM) is used.

o Extensively used and studied.

@ Direct kinematics of 3—3 and 6 — 3 well understood.

@ 6—6 configuration still being studied for simplest direct
kinematics equations.
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OUTLINE

@ ADDITIONAL MATERIAL
@ Problems, References and Suggested Reading
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ADDITIONAL MATERIAL

@ Exercise Problems

o References & Suggested Reading

@ To view above links

e Copy link and paste in a New Window/Tab by right click.
o Close new Window/Tab after viewing.
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