COMPUTATIONAL HEAT TRANSFER AND FLUID FLOW

PRADIP DUTTA DEPARTMENT OF MECHANICAL ENGINEERING INDIAN INSTITUTE OF SCIENCE BANGALORE

Introduction

Outline

Basics of Heat Transfer

Mathematical description of fluid flow and heat transfer: conservation equations for mass, momentum, energy and chemical species, classification of partial differential equations generalized control volume approach in Eulerian frame

HEAT TRANSFER BASICS

What is Heat Transfer?

"Energy in transit due to temperature difference." *Thermodynamics* tells us:

- How much heat is transferred (δQ)
- How much work is done (δW)
- Final state of the system

Heat transfer tells us:

- How (by which mechanism) δQ is transferred
- At what rate δQ is transferred
- Temperature distribution within the body

Heat transfer	complementary	Thermodynamics

MODES

- ✓ Conduction
 - needs matter
 - molecular phenomenon (diffusion process)
 - without bulk motion of matter
- ✓ Convection
 - heat carried away by bulk motion of fluid
 - needs fluid matter
- ✓ Radiation
 - does not need matter
 - transmission of energy by electromagnetic waves

APPLICATIONS OF HEAT TRANSFER

- ✓ Energy production and conversion
 - steam power plant, solar energy conversion etc.
- $\checkmark\,$ Refrigeration and air-conditioning
- ✓ Domestic applications
 - ovens, stoves, toaster
- ✓ Cooling of electronic equipment
- ✓ Manufacturing / materials processing
 - welding, casting, forming, heat treatment, laser machining
- ✓ Automobiles / aircraft design
- ✓ Nature (weather, climate etc)

CONDUCTION

(Needs medium, Temperature gradient)

RATE:

q(W) or (J/s) (heat flow per unit time)

Conduction (contd...)

Rate equations (1D conduction):

Differential Form

- q = -k A dT/dx, W
- k = Thermal Conductivity, W/mK
- $A = Cross-sectional Area, m^2$
- $T = Temperature, K \text{ or } ^{\circ}C$
- x = Heat flow path, m

Difference Form

 $q = - k A (T_2 - T_1) / (x_2 - x_1)$

Heat flux: q'' = q / A = - kdT/dx (W/m²)

(negative sign denotes heat transfer in the direction of decreasing temperature)

Energy transferred by diffusion + bulk motion of fluid

Rate equation (convection)

Heat transfer rate $q = hA(T_s-T_{\infty}) W$ Heat flux q" = $h(T_s-T_{\infty}) W / m^2$

h=heat transfer co-efficient (W $/m^2K$)

not a fluid property alone, but also depends on flow geometry, nature of flow (laminar/turbulent), thermodynamics properties etc.

Convection (contd...)

Typical values of h (W/m²K)

Free convection

Forced convection

gases: 2 - 25 liquid: 50 - 100 gases: 25 - 250 liquid: 50 - 20,000 2500 -100,000

Boiling/Condensation

RADIATION

RATE: q(W) or (J/s) Heat flow per unit time. Flux : $q''(W/m^2)$

Rate equations (Radiation)

RADIATION:

Heat Transfer by electro-magnetic waves or photons(no medium required.)

Emissive power of a surface (energy released per unit area):

 $E = \epsilon \sigma T_s^4 (W/m^2)$

ε= emissivity (property).....

 σ =Stefan-Boltzmann constant

Radiation exchange between a large surface and surrounding

$$Q''_{r a d} = \epsilon \sigma (T_s^4 - T_{sur}^4) W/m^2$$

Substantial derivative

 $\phi = \phi(x_1, x_2, x_3, t)$

$$\frac{D\phi}{Dt} = \frac{\partial\phi}{\partial t} + \frac{\partial\phi}{\partial x_1}\frac{dx_1}{dt} + \frac{\partial\phi}{\partial x_2}\frac{dx_2}{dt} + \frac{\partial\phi}{\partial x_3}\frac{dx_3}{dt}$$

$$\frac{D\phi}{Dt} = \frac{\partial\phi}{\partial t} + \frac{\partial\phi}{\partial x_i}\frac{dx_i}{dt}$$

Conservation principle(s)

- mass is conserved
- momentum is conserved
- energy is conserved
- chemical species are conserved

• ...

$$\varphi = \varphi(x_1, x_2, x_3, t)$$

$$\Phi = \int_V \varphi dV$$

$$D\Phi \quad D \quad f \quad f \quad D \quad (--)$$

$$\frac{D\Phi}{Dt}_{Change} = \frac{D}{Dt} \int_{V} \varphi dV = \int_{V} \frac{D}{Dt} (\varphi dV) = \int_{V} \psi dV$$

Conservation principle

for an elementary volume dV:

Conservation principle

Conservation principle

 u_i

 \boldsymbol{n}_{i}

for an elementary volume dV:

$$\frac{D\varphi}{Dt} + \varphi \frac{\partial u_i}{\partial x_i} = \psi$$
$$\frac{\partial \varphi}{\partial t} = -\frac{\partial}{\partial x_i} (\varphi u_i) + \psi$$

integrated for a final volume V bounded by a surface A:

$$\int_{V} \frac{D}{Dt} (\varphi dV) = \int_{V} \frac{\partial \varphi}{\partial t} dV + \int_{V} \frac{\partial}{\partial x_{i}} (\varphi u_{i}) dV =$$
$$= \int_{V} \frac{\partial \varphi}{\partial t} dV + \int_{A} \varphi n_{i} u_{i} dA = \int_{V} \psi dV$$

called as "Reynolds Transport Equation (RTE)" - a relation between a system and control volume.

Conservation of mass

Total mass remains constant. For a control volume, the balance of mass flux gives the mass accumulation rate.

set:

 $\varphi = \rho$ - density, then $\phi = \int_{V} \rho dV$ - mass $\psi = 0$ - no source

Conservation of mass

continuity equation

for an elementary volume dV:

integrated for a final volume V bounded by a surface A :

$$\int_{V} \frac{\partial \rho}{\partial t} dV = -\int_{A} \rho n_{i} u_{i} dA \qquad \blacksquare$$

Incompressible flow

for an incompressible fluid: $\rho = const$: written for an elementary volume dV :

or a final volume $oldsymbol{V}$ bounded by a surface $oldsymbol{A}$:

$$u_i$$
 dV V
 n_i dA A

$$\int_{A} n_i u_i dA = 0$$

 $\frac{\partial u_i}{\partial x_i} = 0$

Conservation of momentum

Rate of change of momentum will cause fluid acceleration. For a control volume, we consider the balance of momentum fluxes.

$$\frac{D}{Dt}\left(\rho dVu_{j}\right) = F_{j}$$

set :

$$\varphi = \rho u_j$$
 - density × velocity, then
 $\phi = \int_V \rho u_j dV$ - momentum
 $\psi = F_j$ - force per unit volume

Conservation of momentum

momentum equation

for an elementary volume dV :

Conservation of momentum

integrated for a final volume Vbounded by a surface A:

Stress - strain relationship

$$dF_{j} = \frac{\partial \sigma_{ij}}{\partial x_{i}} dV = \left(-\delta_{ij}\frac{\partial p}{\partial x_{i}} + \frac{\partial \sigma_{ij}^{d}}{\partial x_{i}}\right) dV$$

$$u_{2} = u_{3} = 0 \implies \frac{\partial u_{2}}{\partial x_{2}} = \frac{\partial u_{3}}{\partial x_{3}} = 0$$

$$\implies \frac{\partial u_{1}}{\partial x_{1}} = 0 \implies u_{1} = u_{1}(x_{2}) \qquad \omega_{12} = \frac{1}{2} \left(\frac{\partial u_{2}}{\partial x_{1}} + \frac{\partial u_{1}}{\partial x_{2}} \right) = \frac{1}{2} \frac{\partial u_{1}}{\partial x_{2}}$$

Stress-strain relationship

for Newtonian fluids :

$$\sigma_{12} = \mu \frac{\partial u_1}{\partial x_2} = 2\mu \omega_{12}$$

generalized :

$$\sigma_{ij}^{d} = 2\mu\omega_{ij}^{d}$$

deformation stress = 2 X viscosity X deformation strain rate

$$\omega_{ij} = \frac{1}{3}\delta_{ij}\omega_{kk} + \omega_{ij}^d$$

$$\sigma_{ij}^{d} = 2\mu \left[\frac{1}{2} \left(\frac{\partial u_{j}}{\partial x_{i}} + \frac{\partial u_{i}}{\partial x_{j}} \right) - \frac{1}{3} \delta_{ij} \frac{\partial u_{k}}{\partial x_{k}} \right]$$

Navier-Stokes equations

$$\frac{\partial}{\partial t} \left(\rho u_{j} \right) + \frac{\partial}{\partial x_{i}} \left(\rho u_{j} u_{i} \right) = \rho f_{j} - \frac{\partial p}{\partial x_{j}} \left(\frac{\partial \sigma_{ij}^{d}}{\partial x_{i}} \right)$$

$$\frac{\partial \sigma_{ij}^{d}}{\partial x_{i}} = \frac{\partial}{\partial x_{i}} \left(\mu \frac{\partial u_{j}}{\partial x_{j}} \right) + \frac{\partial}{\partial x_{i}} \left(\mu \frac{\partial u_{i}}{\partial x_{j}} \right) - \frac{2}{3} \frac{\partial}{\partial x_{i}} \left(\mu \delta_{ij} \frac{\partial u_{k}}{\partial x_{k}} \right)$$

$$\frac{\partial \sigma_{ij}^{d}}{\partial x_{i}} = \frac{\partial}{\partial x_{i}} \left(\mu \frac{\partial u_{j}}{\partial x_{i}} \right) + \frac{1}{3} \frac{\partial}{\partial x_{j}} \left(\mu \frac{\partial u_{i}}{\partial x_{i}} \right)$$

Navier-Stokes equations

$$\frac{\partial}{\partial t} (\rho u_j) + \frac{\partial}{\partial x_i} (\rho u_j u_i) =$$

$$\rho f_j - \frac{\partial p}{\partial x_j} + \frac{\partial}{\partial x_i} \left(\mu \frac{\partial u_j}{\partial x_i} \right) + \frac{1}{3} \frac{\partial}{\partial x_j} \left(\mu \frac{\partial u_i}{\partial x_i} \right)$$

for an incompressible fluid $\rho = const$

with a constant viscosity $\mu = const$

$$\frac{\partial u_j}{\partial t} + \frac{\partial}{\partial x_i} \left(u_j u_i \right) = f_j - \frac{1}{\rho} \frac{\partial p}{\partial x_j} + \frac{\mu}{\rho} \frac{\partial^2 u_j}{\partial x_i^2}$$

Surface force decomposition

$$dF_{j} = \frac{\partial \sigma_{ij}}{\partial x_{i}} dV = \left(-\delta_{ij}\frac{\partial p}{\partial x_{i}} + \frac{\partial \sigma_{ij}^{d}}{\partial x_{i}}\right) dV$$

since:
$$\delta_{ij} \frac{\partial p}{\partial x_i} = \frac{\partial p}{\partial x_j}$$

the total stress F_i can be separated into the spherical and deformation components:

$$dF_{j} = -\frac{\partial p}{\partial x_{j}}dV + \frac{\partial \sigma_{ij}^{d}}{\partial x_{i}}dV$$

Work decomposition

total work done on an elementary volume:

$$\left(\sigma_{12} + \frac{\partial \sigma_{12}}{\partial x_1} dx_1\right) dx_2 dx_3 \left(u_2 + \frac{\partial u_2}{\partial x_1} dx_1\right) - \sigma_{12} dx_2 dx_3 u_2 =$$

Work decomposition

$$= \left(u_2 \frac{\partial \sigma_{12}}{\partial x_1} + \sigma_{12} \frac{\partial u_2}{\partial x_1}\right) dx_1 dx_2 dx_3 = \frac{\partial}{\partial x_1} \left(u_2 \sigma_{12}\right) dV$$

generalized - total work done on an elementary volume can be separated into the kinetic and deformation components:

Conservation of mechanical energy

"change of kinetic energy is a result of work done by external forces"

start with the momentum equation :

$$\frac{D}{Dt}(\rho dV u_j) = F_j \qquad /\times u_j$$

Conservation of thermal (or internal) energy

Net heat flux entering a control volume results in rate of change of internal energy

Conservation of thermal energy

set :

$$\varphi = cT \quad \text{-specific heat} \times \text{temperature}$$

$$\phi = \int_{V} cT\rho dV \quad \text{-internal energy}$$

$$\psi = \frac{\partial}{\partial x_i} \left(k \frac{\partial T}{\partial x_i} \right) + \sigma_{ij} \frac{\partial u_j}{\partial x_i} \quad \text{-heat transfer}$$

$$\underline{\text{thermal energy equation}}$$

for an elementary volume dV :

$$\frac{\partial}{\partial t}(\rho cT) + \frac{\partial}{\partial x_i}(\rho cTu_i) =$$
$$= \frac{\partial}{\partial x_i} \left(k\frac{\partial T}{\partial x_i}\right) + \sigma_{ij}\frac{\partial u_j}{\partial x_i}$$

Conservation of thermal energy

integrated for a final volume $oldsymbol{V}$ bounded by a surface $oldsymbol{A}$:

Conservation of chemical species

Net species mass transfer across the control volume faces + chemical reaction within the control volume results in a change of concentration of chemical Species in the control volume

Conservation of chemical species

set :

$$\varphi = m^{s} - species mass concentration$$
$$\phi = \int_{V} m^{s} \rho dV - species mass$$
$$\psi = \frac{\partial}{\partial x_{i}} \left(\mathbf{D}^{s} \frac{\partial m^{s}}{\partial x_{i}} \right) + R^{s} - diffusion and chemical reaction$$

mass transfer equation

for an elementary volume dV:

$$\frac{\partial}{\partial t} (\rho m^{s}) + \frac{\partial}{\partial x_{i}} (\rho m^{s} u_{i}) =$$
$$= \frac{\partial}{\partial x_{i}} \left(\mathbf{D}^{s} \frac{\partial m^{s}}{\partial x_{i}} \right) + R^{s}$$

Conservation of chemical species

integrated for a final volume Vbounded by a surface A :

species convection species concentration change inlet – outlet $\int_{V} \frac{\partial}{\partial t} \left(\rho m^{s} \right) dV = -\int_{A} \rho m^{s} n_{i} u_{i} dA$ $+\int_{A} \mathbf{D}^{s} \frac{\partial m^{s}}{\partial x_{i}} n_{i} dA + \int_{V} R^{s} dV$ species diffusion source/sink due to mass transfer chemical reaction

Class of Linear Second-order PDEs

- Linear second-order PDEs are of the form $Au_{xx} + 2Bu_{xy} + Cu_{yy} + Eu_x + Fu_y + Gu = H$ where *A* - *H* are functions of *x* and *y* only
- Elliptic PDEs: $B^2 AC < 0$

(steady state heat equations without heat source)

- Parabolic PDEs: $B^2 AC = 0$ (transient heat transfer equations)
- Hyperbolic PDEs: $B^2 AC > 0$ (wave equations)

MODULE 1: Review Questions

- What is the driving force for (a) heat transfer (b) electric current flow and (c) fluid flow?
- Which one of the following is not a material property?
 (a) thermal conductivity (b) heat transfer coefficient (c)emissivity
- What is the order of magnitude of thermal conductivity for (a) metals (b) solid insulating materials (c) liquids (d) gases?
- What are the orders of magnitude for free convection heat transfer coefficient, forced convection and boiling?
- Under what circumstances can one expect radiation heat transfer to be significant?
- An ideal gas is heated from 40°C to 60°C (a) at constant volume and (b) at constant pressure. For which case do you think the energy required will be greater? Explain why?
- A person claims that heat cannot be transferred in a vacuum. Evaluate this claim.

MODULE 1: Review Questions (contd...)

- In which of the three states (solid/liquid/gas) of a matter, conduction heat transfer is high/low? Explain your claim.
- Name some good and some poor conductors of heat.
- Show that heat flow lines and isotherms in conduction heat transfer are normal to each other. Will this condition hold for convection heat transfer?
- Distinguish between Eulerian and Lagrangian approach in fluid mechanics. Why is the Eulerian approach normally used?
- Derive the Reynolds transport equation.
- Derive the continuity (mass conservation) equation in differential form for incompressible flow.
- Define substantial derivative. What is the physical significance of the substantial derivative in an Eulerian framework?