Lecture 3 Pattern (Click on Figure 2 to view a typical pattern) The pattern is the principal tool during the casting process. It is the replica of the object to be made by the casting process, with some modifications. The main modifications are the addition of pattern allowances, and the provision of core prints. If the casting is to be hollow, additional patterns called cores are used to create these cavities in the finished product. The quality of the casting produced depends upon the material of the pattern, its design, and construction. The costs of the pattern and the related equipment are reflected in the cost of the casting. The use of an expensive pattern is justified when the quantity of castings required is substantial. Functions of the Pattern
Pattern Material Patterns may be constructed from the following materials. Each material has its own advantages, limitations, and field of application. Some materials used for making patterns are: wood, metals and alloys, plastic, plaster of Paris, plastic and rubbers, wax, and resins. To be suitable for use, the pattern material should be:
The usual pattern materials are wood, metal, and plastics. The most commonly used pattern material is wood, since it is readily available and of low weight. Also, it can be easily shaped and is relatively cheap. The main disadvantage of wood is its absorption of moisture, which can cause distortion and dimensional changes. Hence, proper seasoning and upkeep of wood is almost a pre-requisite for large-scale use of wood as a pattern material. Figure 2: A typical pattern attached with gating and risering system Pattern Allowances Pattern allowance is a vital feature as it affects the dimensional characteristics of the casting. Thus, when the pattern is produced, certain allowances must be given on the sizes specified in the finished component drawing so that a casting with the particular specification can be made. The selection of correct allowances greatly helps to reduce machining costs and avoid rejections. The allowances usually considered on patterns and core boxes are as follows:
Shrinkage or Contraction Allowance ( click on Table 1 to view various rate of contraction of various materials) All most all cast metals shrink or contract volumetrically on cooling. The metal shrinkage is of two types:
Table 1 : Rate of Contraction of Various Metals
Exercise 1 The casting shown is to be made in cast iron using a wooden pattern. Assuming only shrinkage allowance, calculate the dimension of the pattern. All Dimensions are in Inches Solution 1
The shrinkage allowance for cast iron for size up to 2 feet is o.125 inch per feet (as per Table 1) For dimension 18 inch, allowance = 18 X 0.125 / 12 = 0.1875 inch » 0.2 inch For dimension 14 inch, allowance = 14 X 0.125 / 12 = 0.146 inch » 0.15 inch For dimension 8 inch, allowance = 8 X 0.125 / 12 = 0.0833 inch » 0. 09 inch For dimension 6 inch, allowance = 6 X 0.125 / 12 = 0.0625 inch » 0. 07 inch The pattern drawing with required dimension is shown below:
|