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 Lecture 6 

MOMENTUM EQUATION 

 

6.1 MOMENTUM EQUATION: INTEGRAL FORM   
 

Newton’s second law of motion states that the rate of change of linear momentum for a 
material region (system) is equal to the sum of external forces acting on the system. For a 
particle of mass dm, this law can written as  
 

   d
d d ,           d  = d

d
m m

t
 F v                              (6.1)    

 

Hence, for a finite material region, this law takes the form  
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where P is the linear momentum of the system. The intensive property corresponding to P is
  v . Hence, from Reynolds transport theorem for a fixed control volume  
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Net force F on the control volume can be expressed as sum of the surface force, FS (pressure, 
viscous stress), and body force, FB (gravity, electromagnetic, centrifugal, Coriolis etc.), i.e.  

 
S B F F F                                  (6.4) 

The surface force FS essentially represents microscopic momentum flux across a surface and 
can be expressed as  

 dS

S

 F τ A                                  (6.5) 

where τ is the stress tensor. Body force FB can be expressed as  
 
  dB 



 F b                                (6.6) 

where b is body force per unit mass. Combining (6.2)-(6.6), the integral form of momentum 
equation can be written as 

 

Convective flux Diffusive flux 
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                                                   (6.7) 

 
Note that since momentum is a vector quantity, its convective and diffusive fluxes are the 
scalar products of second order tensors vv  and τ   with the surface vector d .A  
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6.2 MOMENTUM EQUATION: DIFFERENTIAL FORM 
 
For a fixed control volume, order of temporal differentiation and integration in Eq. (6.7) can 
be interchanged. Transform the convective and diffusive terms using Gauss divergence 
theorem, i.e. 

      

( )
d d ,   d ( )d   and d  d
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v
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 Substitution of Eq. (6.8) into Eq. (6.7) yields  
 

  ( )
. . d 0
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Equation (6.9) holds for any control volume which is possible only if the integrand vanishes 
everywhere, i.e.  

  ( )
. .

t

  
  


v

vv τ b                           (6.10) 

Equation (6.10) is referred as the conservative or strong conservation form of momentum 
equation. It is also known as Cauchy equation of motion.  
 
 The integral form of momentum equation (6.7) or its differential form represented by 
Eq. (6.10) is applicable to an inertial control volume. Similar forms can be derived for 
moving control volumes and non-inertial reference frames (Batchelor 1973, Panton 2005, 
Kundu and Cohen 2008).   
 
 Further, using the identity    
 

              vv v v v v                            (6.11)  
 

and chain rule of differentiation, we get  
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Using continuity equation (5.4), the first term on the RHS of the preceding equation vanishes. 
Thus, Eq. (6.10) takes the following form:  

 
D
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Dt t
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v v

v v τ b τ b                 (6.12) 

 
where the operator (D/Dt) denotes the material or particle derivative. Equation (6.12) is 
referred to as the non-conservative form of the momentum equation.  
 
 

Example 6.1 
Derive the differential form of the momentum equation using an infinitesimal differential 
control volume in Cartesian coordinates.  
 
Solution 
Let us consider flow of a fluid through an infinitesimal differential control volume of 
dimensions dx, dy and dz. For the sake of clarity, Figure 6.2 depicts the flow through a three-
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dimensional control volume, and the forces acting on the surfaces of the control volume in x-
direction only. The resultant force in x-direction is  

 

d d d d d d

       d d d + d d d

      = d d d
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Similarly, components of the resultant force in y- and z-directions are  
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Figure 6.2 Forces acting on the faces of a differential control volume (only the x-components 

are shown in the figure for clarity)   
 
From Reynolds transport theorem,  
 

Rate of change of Rate of efflux of momentum d

momentum in the CV across the control surfacedt
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Rate of change of the momentum in CV = 
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Rate of efflux of momentum in x-direction is given by  
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Similarly, rate of momentum efflux in y- and z-directions are  
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From Newton’s second law, DP/Dt = F. The x-component of this equation is  
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which can be simplified to obtain the x-component of momentum equation.  We can similarly 
obtain y- and z-components of the momentum equation, and these equations are given by  
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The preceding equations represent the conservation form of the momentum equation. Non-
conservation form can be obtained using alternative form of the Newton’s second law given 
by  
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Simplification of the preceding equation and similar equations for y and z-components leads 
to the non-conservation form of momentum equation in Cartesian component form given by 
the following set of scalar equations: 
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Exercise 6.1: Derive the differential form of momentum equation in polar coordinates by 
take an infinitesimal control volume in (a) cylindrical polar coordinates and (b) spherical 
polar coordinates.   
 
REFERENCES 
 
Batchelor, G. K. (1973). An Introduction to Fluid Dynamics. Cambridge University Press, 

Cambridge.  

Kundu, P. K. and Cohen, I. M. (2008). Fluid Mechanics, 4th Ed., Academic Press. 

Panton, R. L. (2005). Incompressible Flow, 3rd Ed., Wiley.  

 


