Module: 4 and 5

Quiz Short questions:

1.	The requirements of, and						
	demand the use of advanced or non-conventional welding methods.						
2.	In the SAW process, the arc is under a blanket of,						
	hence it is not visible from outside.						
3.	The flux helps in removal of impurities in the form of and can improve						
	the properties of weld by addition of						
4.	SAW gives higher, and as compared to other welding						
	methods.						
5.	The polarity of DCEN (Direct Current Electrode Negative) gives						
	, and						
6.	The resistance welding uses to generate heat, which is a						
	.						
7.	The heat generated in RW is given by						
	·						
8.	Some examples of variant resistance welding processes are						
9.	Explosive welding is primarily used for bonding sheets of corrosion- resistant						
	metal to, particularly for						
10.	The prime limitation of explosive welding is that						
	The Friction Welding (FRW) is a process that produces						
	a weld under						
12.	The principle of FSW is due to						
	The electron beam welding process is mostly used in joining refractive						
	materials such as; which are used in missiles.						
14.	In Laser welding, the heat input is localized, coherent and just sufficient to						
	fuse the weld metal, thus the						

15.	The	diffusion	welding	can	be	achieved	when		
16.	HER	F	processes		uti	lize	the		
	The rapid prototyping systems use an: in building shapes an								
	join _			to form p	hysical	objects.			
18.	The	SLS stands for	or			which can	selectively		
	manu	facture models	having	us	ing lase	r and CAD te	chnology.		
19.	Micro	owave processi	ng is a	1	process	enabling			
	proce	essing of materia	ıls.						
20.	Powe	er absorbed in m	icrowave proces	sing is gi	ven as:				
21.	In mi	icrowave proces	sing, as the ene	rgy is ab	sorbed	within the ma	aterial, the		
	electr	ric field							
			processing,			is gene	rated is		
	, instead of originating from external sources.								
23.	The	recent	applications	of	m	icrowaves	include		
24.	The 1	most promising	future technolo	gies in a	dvanced	d manufactur	ing include		
			and						

Answers

- 1. Good finish, low heat affected zones and high quality welds
- 2. Submerged, flux
- 3. Slag, some alloying elements
- 4. Metal deposition rates, welding speeds and process efficiency.
- 5. Higher deposition rates, higher yield strength and higher hardness
- 6. Electric current, renewable and environment friendly resource
- 7. $H = K I^2 RT$
- 8. Upset, Spot, Projection and Seam welding.
- 9. Heavier plates of base metal (cladding), large areas.
- 10. Metals must have high impact resistance and ductility.
- 11. Solid state welding, compressive forces
- 12. Friction heating at the interface under pressure.
- 13. Columbium, tungsten and ceramics.
- 14. Heat affected zones are reduced and work piece distortions are minimized.
- 15. Two pieces are in intimate contact under pressure.
- 16. Application of large amounts of energy in a very short time interval
- 17. Additive approach; liquid, powder, or sheet materials
- 18. Selective Laser Sintering, cavities.
- 19. Green, rapid
- 20. $P = 2\pi f \epsilon "E^2$
- 21. Decreases as a function of the distance from the surface of the material
- 22. Internally within the material and transmits outwards
- 23. Sintering, joining, cladding and drilling of materials.
- 24. Rapid Manufacturing and Microwave processing.