Quiz II

Answer all Questions

1. A hollow cylindrical propellant grain of outer diameter 600 mm has the initial propellant surface in the shape of a diverging cone. The axis of the cone coincides with the axis of the cylindrical chamber containing the grain. The port diameter of the conical surface increases from 200 mm at the head end of the grain to 300 mm at the nozzle end. The length of the grain is 750 mm . The throat diameter is 45 mm . The ends of the grain are inhibited from burning. Determine:
i. Initial equilibrium value of pressure developed by the grain
ii. Maximum pressure developed
iii. Web thickness
iv. Mass of the propellant sliver

You can assume the burn rate law for the propellant to be given by $r=a p^{n}$. The value of $\mathrm{a}_{70}=5 \mathrm{~mm} / \mathrm{s}$ and $\mathrm{n}=0.3$. The characteristic velocity $\left(\mathrm{C}^{*}\right)$ for the propellant is $1500 \mathrm{~m} / \mathrm{s}$. The density of the solid propellant is $1700 \mathrm{~kg} / \mathrm{m}^{3}$.
2. A liquid propellant rocket developing a thrust of 500 N uses MMH and $\mathrm{N}_{2} \mathrm{O}_{4}$ for the propellant at a mixture ratio of 1.65 . The chamber pressure is 0.7 MPa . The value of the characteristic velocity C^{*} of the propellant at the above chamber pressure and the mixture ratio of 1.65 is $1800 \mathrm{~m} / \mathrm{s}$. The thrust coefficient C_{F} of the rocket is 1.5 . Determine:
i. Throat area of the nozzle
ii. Mass flow rate of MMH and $\mathrm{N}_{2} \mathrm{O}_{4}$
iii. The diameter of the injection holes to be provided in the injector for the MMH and $\mathrm{N}_{2} \mathrm{O}_{4}$ if 10 doublet injector elements are used. The injection pressure of MMH and $\mathrm{N}_{2} \mathrm{O}_{4}$ is 1 MPa . The discharge coefficient of the orifices is 0.95 for both MMH and $\mathrm{N}_{2} \mathrm{O}_{4}$. The density of MMH is $868 \mathrm{~kg} / \mathrm{m}^{3}$ and the density of $\mathrm{N}_{2} \mathrm{O}_{4}$ is $1400 \mathrm{~kg} / \mathrm{m}^{3}$.
3. A liquid propellant rocket uses hydrazine for fuel and $\mathrm{N}_{2} \mathrm{O}_{4}$ for oxidizer. The rate of hydrazine injection is $4 \mathrm{~g} / \mathrm{s}$ and that of $\mathrm{N}_{2} \mathrm{O}_{4}$ is $6 \mathrm{~g} / \mathrm{s}$. The mean diameter of hydrazine and $\mathrm{N}_{2} \mathrm{O}_{4}$ droplets formed in the spray is 0.3 mm and the mean axial velocity of the droplets
in the combustion chamber is $50 \mathrm{~m} / \mathrm{s}$. The mean length of the combustion chamber is 50 cm .

The evaporation of the droplets can be assumed to be given by the law: $\mathrm{d}^{2}=\mathrm{d}_{0}{ }^{2}-\lambda \mathrm{t}$, where d is the diameter of the droplets at time t and d_{0} is the initial diameter. The evaporation constant λ is $3 \mathrm{~mm}^{2} / \mathrm{s}$ for hydrazine droplets and $5 \mathrm{~mm}^{2} / \mathrm{s}$ for $\mathrm{N}_{2} \mathrm{O}_{4}$ droplets. Determine:
i. Mixture ratio at injection
ii. Mixture ratio of the vaporized propellant.
iii. If the characteristic velocity C^{*} in m / s is expressed in terms of mixture ratio by the expression $C^{*}=2000-100(|\mathrm{R}-1.4|)$, what is the value of C^{*} efficiency due to incomplete vaporization.
4. In a simplified model of combustion of a solid composite propellant, you can assume the final diffusion flame to stand off at a distance of $120 \mu \mathrm{~m}$ from the surface and to be at a temperature of 3000 K . The steady state temperature of the burning surface is 700 K . The specific heat of the propellant is $800 \mathrm{~J} /(\mathrm{kg} \mathrm{K})$ and the thermal conductivity of the gas above the propellant is $0.05 \mathrm{~W} /(\mathrm{m} \mathrm{K})$. The overall heat required at the surface to bring about the pyrolysis and gas release is $50 \mathrm{~kJ} / \mathrm{kg}$. Determine the burn rate of the propellant.

You can assume the density of the propellant as $1500 \mathrm{~kg} / \mathrm{m}^{3}$ and the density of the gas above the propellant as $12 \mathrm{~kg} / \mathrm{m}^{3}$. The temperature of the unburned propellant is 300 K . You can also assume a linear profile for the temperature distribution between the flame and the propellant surface.

