Wave Propagation in Continuous Media

Exercises

1. Find the general solution in Cartesian coordinates to the 1st-order PDE

$$
y u_{x}-x u_{y}=x^{2}+y^{2} .
$$

Verify the solution by direct differentiation.
2. Solve the following equations :
(a) $(y+u) u_{x}+(x+u) u_{y}=x+y$.
(b) $x u\left(u^{2}+x y\right) u_{x}-y u\left(u^{2}+x y\right) u_{y}=x^{4}$.
3. Determine the solution $u=u(x, y)$ to the PDE

$$
u u_{x}-u u_{y}=y-x
$$

that satisfies $u(1, y)=g(y)$ for a given function $g(y)$.
4. (a) Find the general solution to the PDE

$$
y u_{x}+x u_{y}=2 x y
$$

(b) Find the particular solution that satisfies $u=y$ on the circle $x^{2}+y^{2}=1$.
5. Show that the solution of the nonlinear PDE $u_{x}+u_{y}=u^{2}$ that satisfies $u=x$ on the line $y=-x$ becomes infinite along the hyperbola $x^{2}-y^{2}=4$.
6. Find the general solution of the equation $y u_{x}-2 x y u_{y}=2 x u$. In particular, determine the solution that satisfies $u(0, y)=y^{3}$.
7. It may be assumed that the rate of deposit or removal of sand on the bed of a stream is $a(\partial v / \partial x)$, where a is a constant and v is the velocity of the water in the x direction. If η, h denote the heights, above an arbitrary zero level, of the top of the sand in the bed and of the water surface, respectively, show that the variation of η is governed by the first order equation

$$
(h-\eta)^{2} \frac{\partial \eta}{\partial t}+m \frac{\partial \eta}{\partial x}=0
$$

where m is a constant. Assuming h to be constant, show that the general solution of this equation is

$$
\eta=f\left[x-m t /(h-\eta)^{2}\right]
$$

where the function f is arbitrary. If $\eta=\eta_{0} \cos (2 \pi x / \lambda)$ at $t=0$, find the relation between η and x at time t.
8. Consider the quasi-linear PDE

$$
u u_{x}+u_{y}=0, \quad-\infty<x<\infty, \quad y>0
$$

with the initial data $u(x, 0)=\operatorname{sech} x,-\infty<x<\infty$. Determine the solution, and show that the solution remains differentiable so long as $y<y^{*}$, where y^{*} is the minimum value of the function

$$
\frac{\cosh ^{2} s}{\sinh s}, s>0
$$

9. Use characteristics in order to solve the system of PDE

$$
u_{t}+v_{x}=0, \quad v_{t}+u_{x}=0
$$

with the initial data $u(x, 0)=f(x)$ and $v(x, 0)=g(x)$.
10. Determine the dispersion relation for the wave equation with a mixed derivative, $u_{t t}-$ $c^{2} u_{x x}=-2 \alpha u_{x t}$, where α and c are positive constants. Plot the dispersion relation in the ω - k plane. Also, plot the variation of the phase and group velocities with k.
11. (a) Find the general solution $u(x, y)$ of the PDE

$$
u_{x}+2 x\left(e^{-x^{2}}-y\right) u_{y}=x^{2}
$$

(b) Describe (with the help of a sketch) the region R of the xy-plane in which $u(x, y)$ is determined by prescribed values of u along the line segment that connects the points $(0,0)$ and $(0,1)$. If $u=1+y$ on this line segment, find $u(x, y)$ in R.
12. Determine the solution $u=u(x, y, z)$ of the PDE $x u_{x}+y u_{y}+u u_{z}=0$, where u satisfies the condition $u(x, y, 0)=x y$ for $x>0, y>0$.
13. Using the Fourier and Laplace transforms, solve the heat equation $w_{, t}=\alpha w_{, x x}, x \in$ $(-\infty, \infty)$ with the initial conditions $w(x, 0)=\delta(x)$. Using this solution, write the solution for a general initial condition $w(x, 0)=g(x)$.
14. Determine the Green's funtion of an infinite string, i.e., the solution of $w_{, t t}-c^{2} w_{, x x}=$ $\delta(x) \delta(t)$ with $w(x, 0)=0$ and $w_{, t}(x, 0)=0$. Using this solution, express the solution of the system $w_{, t t}-c^{2} w_{, x x}=0$ with $w(x, 0)=w_{0}(x)$ and $w_{, t}(x, 0)=v_{0}(x)$.
15. Flexural vibrations of a beam is governed by $w_{, t t}+\beta^{4} w_{, x x x x}=0$. Write down the dispersion relation and plot. Also calculate the phase and group velocities. Determine the exact evolution of a Gaussian wave packet in a beam.
16. A string is actuated tranversely by an actuator at one end while the other end is connected to a viscous damper of damping coefficient d. Both ends can slide transversely. Determine the impedance of the system as observed by the actuator.
17. A homogeneous uniform bar, fixed at one end, is kept under axial tension by a string. If the string suddenly snaps, determine the motion of the bar in terms of the propagating waves. Take ρ, A, E and l as, respectively, the density, area of cross-section, Young's modulus and length of the bar.
18. A particular type of electromagnetic waves in a dissipative medium are governed by the PDE $u_{t t}-c^{2} u_{x x}+2 \mu\left(u_{t}+a u_{x}\right)=0$, where $c>0, \mu>0$, and a is real.
(a) Find the relation $\omega=W(k)$ for a plane wave $u=e^{i(k x-\omega t)}$ in this medium. Calculate the phase and group velocities as a functions of k.
(b) Derive approximations to $W(k)$ for fixed k in the following cases: (i) For sufficiently small μ, retain terms to order μ and show that u decays if $c>a>-c$.
(ii) For sufficiently large μ, retain leading terms and show that no waves can grow in time. Show that this case is equivalent to the approximation of small k (i.e., long waves) for fixed μ.

