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1.1 Transverse Vibrations of Strings

A string is a one-dimensional elastic continuum that does not transmit or

resist bending moment. Consider a string, stretched along the x-axis to a
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Fig. 1.1: Schematic representation of a taut string

length l by a tension T , as shown in Fig. 1.1. A small element of the string

is shown in Fig. 1.2. Neglecting longitudinal motion and assuming w,x � 1,
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Fig. 1.2: Free body diagram of a string element

the governing equations for the element can be written as

Longitudinal dynamics: [T (x, t)],x = −n(x, t) (1.1)

Transverse dynamics: ρA(x)w,tt − [T (x)w,x],x = p(x, t). (1.2)

When n(x, t) = p(x, t) = 0, and ρA is constant, we can rewrite (1.2) as

w,tt − c2w,xx = 0, (1.3)

where c =
√
T/ρA is a constant having the dimension of speed. This repre-

sents the unforced transverse dynamics of a uniformly tensioned string.

A stretched infinite string on a compliant foundation modeled as a distributed

stiffness is shown in Fig. 1.3. The equation of motion reads

ρAw,tt − Tw,xx + κw = 0, (1.4)
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Fig. 1.3: An infinite stretched string on a com-
pliant foundation
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Fig. 1.4: A translating string

where κ is the stiffness per unit length of the foundation.

The equation of motion of the translating string shown in Fig. 1.4 can be

written by replacing ∂t in (1.3) by the material derivative ∂t + v∂x to obtain

w,tt + 2vw,xt − (c2 − v2)w,xx = 0. (1.5)

1.2 Axial Vibration of Bars

ρ, A,Eu(x, t)
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l Fig. 1.5: Schematic representation of a bar

We consider the axial vibration of a bar, as shown in Fig. 1.5. An infinites-
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∆x Fig. 1.6: Free body diagram of a bar element

imal element of the bar, is shown in Fig. 1.6. Using the field variable u(x, t),
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the governing equations for the bar element can be written as

Axial dynamics: ρA(x)u,tt(x, t) = [σx(x, t)A(x)],x (1.6)

Material constitutive equation: σx = Eεx = Eu,x, (1.7)

where E is the material’s Young’s modulus. Using the constitutive equation

in the equation of axial dynamics, the equation of motion is obtained as

ρA(x)u,tt − [EA(x)u,x],x = 0, (1.8)

If the bar is homogeneous and uniform, then (1.8) simplifies to

u,tt − c2u,xx = 0, (1.9)

where c =
√
E/ρ.

For a non-uniform bar, the equation of motion may be written as

a(x)w,tt − [b(x)w,x],x = 0, (1.10)

consider the transformation of the space variable of the form dξ =
√
a(x)/b(x)dx, where ξ is a new space variable. Let the transformation be

represented by x = s(ξ). Then, one can write ∂x =
√
a(ξ)/b(ξ)∂ξ. Defining

the transformation w(ξ, t) = u(ξ, t)/h(ξ) (where h2(ξ) =
√
a(ξ)b(ξ)) one can

obtain the simplified transformed equation of motion

u,tt − u,ξξ + α2u = 0. (1.11)

for the special cases h,ξξ/h = ±α2, where α is a real constant including zero.

NPTEL Course: Wave Propagation in Continuous Media



1.3 Waves in a Fluid-filled Elastic Tube 5

1.3 Waves in a Fluid-filled Elastic Tube

Consider an elastic tube filled with an ideal incompressible fluid. We consider

the propagation of axisymmetric deformations of the tube due to fluctuations

in the fluid pressure. Assuming the problem to be one dimensional, the

govering equations for this case are

Continuity equation: A,t + (Au),x = 0 (1.12)

Momentum equation: u,t + uu,x = −1

ρ
p,x (1.13)

Tube constitutive equation: p = µhr,tt +
Eh

a2 (r − a), (1.14)

where A = πr2 is the area of cross-section of the tube, r is the radius of the

tube, u, ρ and p are, respectively, the velocity, density and pressure of the

fluid, µ is the density of the tube material, h is the thickness of the tube, E is

the Young’s modulus and a is the undeformed radius of the tube. Linearizing

the equations around a basic state (U, ρ0, p0) the equation of motion for the

radial deformation is obtained as

r,tt + 2Ur,xt +

(
U 2 − Eh

ρ0a

)
r,xx − µha

ρ0
r,xxtt = 0. (1.15)

1.4 Torsional Vibration of Circular Bars

Consider the torsional vibrations of a circular bar, as shown in Fig. 1.7. A

small sectional element of the bar is shown in Fig. 1.8. From Fig. 1.8,
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l Fig. 1.7: Schematic representation of a circu-
lar bar
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Fig. 1.8: Deformation of a bar element under torsion

we obtain the kinematic relation r∆φ(x, t) = ∆xψ(r, t), where ψ(r, t) is the

shear strain, and φ(x, t) is the angle of twist. Using Hooke’s law, the shear

stress τxφ(r, t) = Gψ(r, t) = Grφ,x, where G is the shear modulus. Now, the

torque at any cross-section x can be computed as

M(x, t) =

∫
A(x)

rτxφ(r, t) dA = GIp(x)φ,x, (1.16)

where A(x) represents the cross-sectional area, and Ip(x) is the polar moment

of the area. The moment of momentum balance for the element yields

ρIpφ,tt − (GIpφ,x),x = 0. (1.17)
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For a bar with uniform cross-section, we obtain the wave equation

φ,tt − c2φ,xx = 0, (1.18)

where c =
√
G/ρ.

1.5 Transverse Vibration of Beams
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Fig. 1.9: Schematic representation of a beam under
planar deflection

Consider a straight beam undergoing a planar deflection under uniaxial bend-

ing as shown in Fig. 1.9. Referring to Fig. 1.10, the strain-displacement

relation at any height z from the neutral plane is given by

εx(x, z, t) = − z

ρ(x, t)
≈ −zw,xx(x, t) (assuming w,x � 1), (1.19)

where w(x, t) is the transverse deflection field of the neutral plane. From

Hooke’s law as σx(x, z, t) = Eεx(x, z, t) = −Ezw,xx(x, t), where E is Young’s

modulus. The bending moment at any section can then be written as

M(x, t) = −
∫ h/2

−h/2
zσx(x, z, t) dA = EI(x)w,xx(x, t), (1.20)
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Fig. 1.10: Infinitesimal element of a deflected
beam

where I(x) is the second moment of area of cross-section of the beam about

the neutral axis. The equations governing the dynamics the infinitesimal

element are given by

Transverse dynamics: ρAw,tt = V,x (1.21)

Rotational dynamics: ρI(x)θ,tt = M,x + V. (1.22)

Simplifying the above equations and using θ,tt ≈ w,xtt, we can obtain the

Rayleigh beam model

ρAw,tt + [EIw,xx],xx − [ρIw,xtt],x = p(x, t). (1.23)

When the rotary inertia term (ρIw,xtt),x is neglected, we obtain the Euler-

Bernoulli beam model

ρAw,tt + [EIw,xx],xx = p(x, t). (1.24)

NPTEL Course: Wave Propagation in Continuous Media


