
Mechanics

Module I: Force Systems

Lesson 1: Introduction

1 Force

Force in classical mechanics is the perceptible effect that characterizes elec-

tromagnetic and gravitational interaction between particles or bodies. Force,

however, cannot be measured directly, but indirectly through the effect it

produces (such as motion, or deflection/deformation).

Force is a vector quantity which

• has a magnitude and a direction, and

• combines according to the parallelogram law of addition (see Fig. 1).

Figure 1: Parallelogram law of force addition



Force can be attractive or repulsive, and it follows the Newton’s third law.

The force that exists inside a body (between its parts) is known as internal

force, as opposed to external force between two independent particles/bodies.

There are two kinds of forces (based on the range of their effective action):

• Body forces: act throughout the body (e.g., gravitational force)

• Surface forces: act only on the surface (e.g., pressure, drag)

Figure 2: Translation of force vector along its line of action in a rigid body

Figure 3: Translation of force vector along its line of action in a flexible body

A force on a rigid body can be translated along its line of action, as shown

in Fig. 2. This is possible since we will be interested only in the reaction forces

at the support/interaction points. On the other hand, in flexible bodies, we

will be interested in the internal force distribution and the deformation, which

will depend very much on the point of application of the force, as shown in
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Fig. 3. In case of rigid bodies, this translation property allows one to define

a net/total force on a body with a single line of action, as shown in Fig. 4.

Figure 4: Addition of forces on a rigid body (R = F1 + F2)

2 Representation of Vectors

A vector can be represented using a coordinate system such as the Cartesian

coordinate system, as shown in Fig. 5, with unit basis vectors î, ĵ and k̂ with

the following orthonormality properties for simplicity

î · ĵ = 0, ĵ · k̂ = 0, k̂ · î = 0

î · î = 1, ĵ · ĵ = 1, k̂ · k̂ = 1

î × ĵ = k̂, ĵ× k̂ = î, k̂ × î = ĵ

The magnitude of the vector is independent of the choice of the coordinate

system, though the representation of its direction will depend on it. A vector

3



iFx

jFy

kFz

F

i

k

j

x

z

y

Figure 5: Representation of a vector in the Cartesian coordinate system

can be represented in the algebraic form as linear combination of the (unit)

basis vectors as

F = Fxî + Fy ĵ + Fzk̂,

or as components in a matrix form as

F =





Fx

Fy

Fz



 .

The magnitude of the vector is defined as F =
√

F 2
x + F 2

y + F 2
z .

Unit vectors represent directions and are dimensionless. The unit vector

in the direction of F is represented as F̂ = F/F . Using the orthonormality

properties of the basis vectors, one can define various products of vectors.

3 Dot Product
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Figure 6: Difference between decomposition and projection in non-orthogonal coordinates

The dot product is a commutative product and results in a scalar quantity.

It can be used to determine the angle between two directions represented by

two unit vectors. For example, given two unit vectors n̂1 and n̂2, the angle

θ between them is given by cos θ = n̂1 · n̂2 = n1xn2x + n1yn2y + n1zn2z. The

projection of a vector F along a direction represented by a unit vector n̂ is

given by Fn = (F · n̂)n̂. The projection of a vector onto itself gives the square

of the magnitude of the vector, i.e., F 2 = F · F.

Vector projection and vector decomposition are different for non-orthogonal

set of axes, as shown in Fig. 6. Unlike the projected vectors Fa and Fb, the

decomposed vectors F1 and F2 add up vectorially (parallelogram law) to give

back the original vector.

4 Cross Product

The cross product is a non-commutative vector product which yields a new

vector which is orthogonal to both the multiplying vectors. The cross product

5



Figure 7: Moment of a force about a point

c = a × b can be written in the determinant form as

c =

∣∣∣∣∣∣

î ĵ k̂

ax ay az

bx by bz

∣∣∣∣∣∣
,

or in the matrix product form




cx

cy

cz



 =




0 −az ay

az 0 −ax

−ay ax 0








bx

by

bz



 .

The cross product is used to define the moment of a vector about a point

(pole), as shown in Fig. 7. The moment of a force vector is sometimes simply

termed as moment. Since cross-product is not commutative, it is important

to note the definition of moment as

Moment vector = Arm vector× Force vector

⇒ MO = r × F

where r is the arm vector from the pole to any convenient point on the line

of force. The magnitude of the moment vector is given by Fr sin α = Fd,
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Figure 8: Moment of a force about an axis

where d is the perpendicular distance between the pole and the line of the

force.

The projection of the moment of a vector about a pole O along a direction

λ, as shown in Fig. 8, is known as the moment of the vector about an axis.

The axis is defined by the unit vector n̂ representing the direction and passing

through the pole. Moment about an axis is a scalar quantity represented by

the vector triple product

Mλ = r × F · n̂.

5 Problems

Problem 1

A plate is subjected to the two forces, as shown in the Fig. 9. (a) De-

termine the resultant force. (b) Decompose the resultant force in the x-a

(non-orthogonal) coordinate system.
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Figure 9: Problem 1

Solution

Representation of the given forces:

F1 = 800(cos 10◦î − sin 10◦ĵ) N

F2 = 900(− sin 25◦̂i − cos 25◦ĵ) N

Resultant force:

F = F1 + F2

= (800 cos 10◦ − 900 sin 25◦)̂i + (−800 sin 10◦ − 900 cos 25◦)ĵ N

One can also represent

F = Fxî + Faâ.

Hence,

F · ĵ = Faâ · j

⇒Fa = 1350 N.
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Using the relation F · î = Fx + Faâ · î, one can easily obtain Fx = −547 N.

Thus, the representation of F in the x-a coordinate system is given by

F = −547î + 1350â N.

Figure 10: Problem 2

Problem 2

The tension in the chain AB supporting the door shown in Fig. 10 is 100 N.

Determine the component of the tension force along CD. Also, determine the

moment of the tension force about the axis CD.

Solution

Representation of chain tension:

T = 100

−→
AB

AB
N.

Here,

−→
AB =

−−→
CB −

−→
CA

−−→
CB = 1.2ĵ + 0.9k̂ m

−→
CA = 0.9(cos 30◦̂i + sin 30◦k̂) m
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Thus,

−→
AB = −0.779î + 1.2ĵ + 0.45k̂ m

and AB = 1.5 m. Hence,

T = 100(−0.5193î + 0.8ĵ + 0.3k̂) N.

Now, TCD = T · ĈD, where

ĈD =
1

1.5
(0.9 cos 30◦î + 1.2ĵ + 0.9 sin 30◦k̂).

Carrying out the dot product, TCD = 46 N.

Moment of the tension force about CD can be easily obtained from MCD =

−→
CA ×T · ĈD. This yields

MCD =

0.5193 0.8 0.3

0.45
√

3 0 0.45
−51.93 80 30

= −37.392 Nm

Figure 11: Problem 3
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Problem 3

A cable joins two points A and B at the same height from the ground. Given

that T= 800 N, represent the cable tension vector in the coordinate sys-

tem shown. Also, calculate the bending moment about the x-axis and the

torsional moment about the z-axis due to the cable tension.

Solution

Representation of cable tension:

T = 800(cos 15◦ÂB − sin 15◦k̂) N.

Now,

−→
AB =

−−→
CB −

−→
CA

where

−−→
CB = 10î m

−→
CA = −1.5 ĵ m.

Thus,
−→
AB = 10î+1.5ĵ m, and ÂB = 1√

102.25
(10î+1.5ĵ). Using this expression,

we obtain

T = 764î + 114.6ĵ − 207k̂ N.

Moment of T about the x-axis:

Mx =
−→
OA × T · î

where
−→
OA = 6k̂ − 1.5ĵ m. Thus, the bending moment about the x-axis

Mx =

1 0 0

0 −1.5 6
746 114.6 −207

= 998 Nm
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Similarly, the torsional moment about the z-axis

Mz =
−→
OA × T · k̂ = 1146.3 Nm.
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