Vibrations of Structures

Module V: Vibrations of Plates

Exercises

1. A square plate of side a is simply-supported at the four edges, and carries a particle of mass m at the center. Determine the eigenfrequencies and eigenfunctions of the plate.
2. A circular plate of radius a is simply supported at the boundary. Determine the dynamic reaction forces at the boundary for different modes of vibration of the plate.
3. An elliptic plate of semi-major axis a and semi-minor axis b is simply supported at the boundary. Determine the approximate eigenfrequencies and modes of vibrations. Plot the variation of the first six eigenfrequencies with the ratio a / b in the range $(1,2)$.

Figure 1: Exercise 4
4. A circular plate of radius a is simply-supported on a circle of radius b, as shown in Fig. 1. Determine the optimum ratio b / a for which the plate is most firmly supported in the mode $(0,1)$ (i.e., the corresponding frequency is maximized).
5. A circular plate of radius a is clamped at the boundary $r=a$. A particle of mass m is dropped from a height h exactly on the center of the plate. The particle sticks to the plate. Determine the motion of the plate and the force between the particle and the plate.

Figure 2: Exercise 6
6. An annular plate of inner radius a and outer radius b is clamped at the boundary $r=b$, and clamped to a massless collar (at $r=a$) sliding without friction on a guide, as shown in Fig. 2. Determine the eigenfrequencies and eigenfunctions of the system. If the collar is excited by a harmonic force $Q(t)=A \cos \Omega t$, determine the response of the plate.
7. A circular plate of radius a is clamped at the boundary. A constant point force is traveling on a circular path around the center of the plate at a radius r_{0}, i.e., $q(r, \phi, t)=Q_{0} \delta\left(r-r_{0}\right) \delta(\phi-\Omega t)$, where Q_{0} is the constant magnitude, and Ω is the angular speed. Determine the response of the plate. At what values of Ω will the plate resonate?
8. A square plate of side a is simply supported at the edges on a rigid frame. The frame is given harmonic angular oscillations of circular frequency Ω about a center line parallel to an edge. Determine the response of the plate.

