Module 1: Overview of Smart Materials

Bishakh Bhattacharya & Nachiketa Tiwari Department of Mechanical Engineering Indian Institute of Technology, Kanpur

Lecture #1: Introduction to Smart Material

- ➤What is a Smart Material?
- Applications of Smart Material
- Smart systems using Smart Materials
- Smart Actuators
- Direct and Reverse Effects
- Piezoelectric Materials

Features of Smart Materials

- These materials are a part of a group of materials broadly known as Functional Materials.
- The basic energy forms that gets interchanged are: thermal energy, electric energy, magnetic energy, sound energy & mechanical energy
- Analogous to Biological Materials: adaptivity, cellular function, self sensing, actuation & control
- Smart sensors & actuators are highly embeddable

Smartness in a scale of intelligence

- Stupid Dumb Foolish Trivial Sensible Smart/Clever – Intelligent – Wise
- Present smart materials are in the range from highly sensible to poorly intelligent level
- Passive smartness to Active Smartness; eg. of passive smartness - multiphase rocket nozzle of Space Shuttle
- Porous Tungsten with silver coating, Graphite, Ceramic Layer, Steel
- Passive smartness is in open-loop!

Traditional vs. Smart Structure

Traditional structures

- Designed for certain performance requirements eg. load, speed, life span
- Unable to modify its specifications if there is a change of environment

Smart Structures

- Can accommodate unpredictable environments
- Can meet exacting performance requirement
- Offer more efficient solutions for a wide range of applications

Smart Materials

Piezoelectric film, PVDF

SMA, Nitinol

Piezoceramic, PZT

-SMA, Nitinol

MS Material, Terfenol-D

Why smart sensors and actuators ?

- Real time response
- Exploit functional properties
- Better embeddability
- Minimal effect on structural properties
- Reduction in weight
- Less power consumption
- Better reliability

Impetus to growth of smart structures

- Recent advances in materials
- Improved sensor and actuator technologies
- Real-time information processing
- Tape casting and screen printing technologies
- Integration and miniaturization

A Range of Applications

Different Strategies for Vibration Control

Intelligent Product: A Mobile Charger

Smart Materials for Sensing & Actuation

Output	Current/ Charge	Magne- tization	Strain	Temperature	Light
Input					
Electric Field	Cond- uctivity Permitti- vity	Electro- magnetic Effect	Reverse Piezo- electricity	Ohmic Resistance	Electro- Optic effect
Magnetic Field	Eddy Current Effect	Perme- ability	Joule Effect Magneto- striction	Magneto caloric Effect	Magnet o-Optic effect
Stress	Direct Piezo- Electric Effect	Villary Effect	Elastic Modulus	Thermo-Mechanical Effect	Photo- elastic Effect
Heat	Pyro- electric Effect	Thermo- Magne- tization	Thermal Expansion Phase Transition	Specific Heat	Thermo- Lumin- ecence
Light	Photo- Voltaic Effect	Photo- Magne- tization	Photo- striction	Photo- Thermal effect	Refract- ive index

Smart Materials as Sensors & Actuators

Smart Actuators

Input Parameter	Actuator Type/ Devices		
Electric Field	Piezoelectric/		
	Electrostrictive		
	Electrostatic (MEMS)		
	Electro- Rheological Fluid		
Magnetic Field	Magnetostrictive		
	Magneto-Rheological Fluid		
Chemical	Mechano-chemical		
Heat	Shape Memory Alloy		
	Shape Memory Polymer		
Light	Photostrictive		

Traditional VS New Actuators

Drive	Device	Displacement	Accuracy	Torque/Generative Force	Response Time
Air Pressure	Motor	Rotation	degrees	50 Nm	10 sec
	Cylinder	100mm	100µm	10 ⁻¹ N/mm ²	10 sec
Oil Pressure	Motor	Rotation	degrees	1000 Nm	1 sec
	Cylinder	1000mm	10µm	100 N/mm ²	1 sec
Electricity	AC Servo	Rotation	minutes	30 Nm	100 msec
	DC Servo	Rotation	minutes	200 Nm	10 msec
	Linear Stepper	1000mm	10µm	300 N	100 msec
	Voice-Coil	1mm	0.1µm	300 N	1 msec
	Piezoelectric	100µm	0.01µm	30 N/mm ²	0.1 msec
	Magnetostrictive	100µm	0.01µm	100 N/mm ²	0.1 msec
	Ultrasonic Motor	Rotation	minutes	1 Nm	1 msec

Direct Effect

- All Piezoelectric Materials and PVDF
- Magnetostrictive Materials
- Optical Fibre

Converse/Reverse Effect

- Ferroelectrics Perovskites, Piezoceramics, PVDF respond to electric field by change in shape
- Terfenol-D, Amorphous Met-Glasses show a similar effect with the change in magnetic field
- Shape Memory Alloy respond in a similar manner but with the change in Thermal Field
- Electro/Magneto Rheological Fluids respond to electric/magnetic field by changing its' viscosity

Properties of a few Smart Materials

Props.	PZT	PVDF	T-D	NiTiNOL
Free strain(ppm)	1000	700	2000	20000
E. Mod.	62	2.1	48	27– M
(GPa)				89 - A
Band	.1Hz-GHz	.1Hz-GHz	.1Hz-MHz	0-10 Hz

References

- Gauenzi, P., Smart Structures, Wiley, 2009
- Cady, W. G., Piezoelectricity, Dover Publication, 1950
- Crawley, E. F., Intelligent Structures for Aerospace: a technology overview and assessment, AIAA, 33 (8), 1994, pp. 1689-1699

END OF LECTURE 1