Module 4: Interferometry
  References
 

TOMOGRAPHY

  1. G.T. Herman, Image Reconstruction from Projections, Academic, New York (1986).
  2. F. Natterer, The Mathematics of Computerized Tomography, John Wiley, New York (1986).
  3. L. Gatti, F. Solitro, F. Bedarida, P. Boccacci, G.A. Dall’aglio, and L. Zefiro, “Three-dimensional measurements of concentration fields in crystal growth by multidirectional holographic interferometry,” in Laser Interferometry: Quantitative analysis of Interferograms, Proc. SPIE 1162, 126-131 (1989).
  4. D.W. Sweeney and C.M. Vest, “Reconstruction of three-dimensional refractive index fields from multidirectional interferometric data,” Applied Optics 12(11), 2649-2664 (1973).
  5. I. Braslavsky and S.G. Lipson, “Interferometric measurement of the temperature field in the vicinity of ice crystals growing from supercooled water, Physica A Vol. 249, 190-195 (1998).
  6. F. Mayinger, ed., Optical Measurements: Techniques and Applications (Springer-Verlag, Berlin, Germany, 1994).
  7. P. Munshi, “Error analysis of tomographic filters. I: Theory”, NDT and E International Vol. 25(4/5), pp. 191-194 (1992); Part II: Results, NDT and E International Vol. 26(5), pp. 235-240 (1993).
  8. P. Munshi, R.K.S Rathore, K.S. Ram and M.S Kalra, “Error estimates for tomographic inversion”, Inverse Problems Vol. 7, pp. 399-408 (1991).
  9. E. D. Torniainen, A. Hinz and F. C. Gouldin, “Tomographic Analysis of Unsteady, Reacting Flows”, AIAA Journal 36, 1270-1278 (1998).
  10. D.W. Watt and C.M. Vest, “Turbulent flow visualization by interferometric integral imaging and computed tomography”, Experiments in Fluids 8, 301-311 (1990).
  11. Y.C. Michael and K.T. Yang, “Three-dimensional Mach-Zehnder interferometric tomography of the Rayleigh-Benard problem”, ASME J. Heat Transfer 114, 622-629 (1992).
  12. L. McMackin and R.J. Hugo, “High speed optical tomography system for imaging dynamic transparent media”, Optics Express 1(11), 302-311 (1997).
  13. H.S. Ko and K.D. Kihm, “An extended algebraic reconstruction technique (ART) for density-gradient projections: laser speckle photographic tomography”, Experiments in Fluids 27, 542-550 (1999).

PROPER ORTHOGONAL DECOMPOSITION

  1. L. Sirovich, and M. Kirby, “Low-dimensional procedure for the characterization of human faces.” Journal of the Optical Society of America A, Vol. 4(3), pp.519-524 (1987).
  2. L. Sirovich, “Turbulence and the Dynamics of Coherent Structures. Part 1: Coherent Structures,” Quarterly of Applied Mathematics, Vol. 45, No. 3, pp. 561-571 (1987).
  3. A. Chatterjee, “An introduction to the proper orthogonal decomposition”, Current Science, Vol. 78 (7),10 (2000).