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ABSTRACT 

The paper reports a beam hardening correction algorithm to be applied on the 
polyenergetic projection data obtained during X-ray tomography of a specimen. 
Convolution back projection (CBP) algorithm has been used to reconstruct the cross-
section of the specimen from the corrected projection data. The beam hardening 
correction has been applied on simulated test objects and the results have been found 
to be satisfactory. The number of energy levels taken into account is five for the 
considered test cases. The algorithm recovers one solution for each energy level. The 
distribution of errors in each of the solutions depends on the size of the energy level as 
well as the material density distribution. 
 

Keywords: Beam hardening, X-ray tomography, convolution back   projection, flaw 
detection. 

 
 
1. INTRODUCTION 

 
The technique of computerized tomography (CT) has established itself as a leading 

tool in diagnostic radiology over the past three decades and is catching on rapidly in 

the area of non-invasive measurements (NIM). According to Herman1, the aim of CT is 

to obtain information regarding the nature of material occupying exact positions inside 

the body. CT assigns a number to every point inside the body that corresponds to a 

specific material property at that point. A suitable physical property for this number is 

the X-ray or the γ-ray attenuation coefficient of the material. It is obtained from the 

projection data recorded from an experiment. The reconstruction technique can be the 

convolution back projection (CBP) algorithm, originally developed by Ramachandran 

and Laxminarayanan2, or the algebraic reconstruction technique (ART)3,4. In the 

present study, CBP has been used for the reconstruction of the projection data. It is 

assumed that the data is available in a parallel beam configuration, Figure 1; this 

approach has been discussed by Manzoor, et al5. The filter function used in all the 

reconstructions of CBP is Hamming 54, a filter that resolves well the smooth variations 
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in the attenuation coefficient and hence the density. For the purpose of displaying the 

reconstructed image, the CT numbers are read from the CBP output file and 

appropriate gray levels are assigned to it6. Thus by generating a gray scale for each of 

the projection data, the CT image can be graphically displayed on a grid. 
 
For the correct reconstruction of the object, the input file to the CBP must contain 

perfect projection values of the object. In the real life experiment, there are many 

sources of imperfections in the recorded projection data. These include a finite source 

and detector size, scattering of photons, and polyenergetic photons. The measured 

projection data must be analytically corrected for all these imperfections before being 

used for reconstruction. In the present work, corrections for the polyenergetic nature of 

radiation are discussed. 
 
2. THE PROBLEM OF BEAM HARDENING 

 
Of the many sources of imperfections in the projection data referred above that 

related to the polyenergetic nature of radiation is called beam hardening. An X-ray 

source emits photons of multiple energies. A typical energy distribution (spectrum) for 

an X-ray source (for example, tungsten) has been shown in Figure 2. The coefficient of 

linear attenuation of the material is usually a function of the incident photon energy. 

The attenuation at a fixed point is greater for the photons of lower energy. Hence the 

energy distribution of the X-ray beam changes (hardens) as it passes through the 

object. This effect is called the hardening of the X-ray beam. The X-ray beams 

reaching the same point from different directions are likely to have different spectra 

(having passed through different material before reaching this point) and thus will be 

attenuated differently at that point. The coefficients of linear attenuation of a given 

specimen recovered by a tomographic calculation are not the exact values at a given 

energy. Instead they are a combination of attenuation coefficients emitted at all the 

energies by the X-ray source. This combination depends upon the type of functional 

dependence of the attenuation coefficient on the photon energy and the probabilistic 

energy distribution of the source, i.e. temporal photon statistics. The coefficient of 

linear attenuation can be mapped to specific properties of the material such as the 

density distribution. Hence for non-destructive evaluation and non-invasive 

measurements using computerized tomography (CT) to be reliable, it is necessary to 

apply corrections for beam hardening. It requires the conversion of polyenergetic 
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projection data recorded in the experiments into monoenergetic projection data, before 

reconstruction. In the present study, we have demonstrated beam hardening and its 

correction by defining computer-generated objects and mathematically calculating the 

projection data for them.  As an example a star shaped object comprising of two 

materials is presented. For a resolution of 100 rays and 100 views, Figure 3(a) shows 

the reconstruction without the application of beam hardening correction, and Figure 

3(b) is a reconstruction after the application of beam hardening corrections. 
 
3. BEAM HARDENING CORRECTION ALGORITHM 

 
Herman1 has shown the exact correction for beam hardening in the context of 

medical imaging when the reconstruction region has only two types of materials. An 

algorithm for more than two types of materials was also proposed by Herman7,8. It was 

modified by Rama Krishna9 for applications in NDT. In both cases the monoenergetic 

reconstruction was carried out at the mean X-ray energy level and a systematic 

assessment of errors was not attempted. In the present work, we propose an improved 

algorithm for the correction of beam hardening where (1) the reconstruction can be 

performed at any of the energies of the incoming radiations (2) the number of material 

in the object is greater than two, and (3) the iteration scheme can be continued till the 

errors becomes truly negligible.  
 
The statement of the algorithm is presented first. For a fixed source and detector 

position in parallel beam geometry (Figure 1), let m  denote the monoenergetic ray 

sum that would have been measured if (1) source was monoenergetic at energy e , or 

(2) the material would have been such that its attenuation properties were independent 

of the incident photon energy. Let p  be the polychromatic ray sum that is measured 

by the detector in the actual experiment that utilizes X-rays. Mathematically m  and p  

are defined in the following manner: 

∫=
D

0
e dz (z)  m μ      (1) 

 

   de  dz  (z)  -      - p
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0
e
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Here D  is the distance from the source to the detector, )z(eμ  is the linear 

attenuation coefficient at energy e  at a point on the line from the center of the source 

to the center of the detector at a distance z  from the detector, E  is the highest energy 

level present in the beam, and eτ  is the probability that a detected photon of the X-ray 

beam (in air between the source and the detector) is at energy e . It is to be recalled 

that in a complete NDT experiment, m  and p  represents two-dimensional images 

with respect to the ray number and the angle of projection. Such images are called 

sinograms5. 
 
Beam hardening correction can be done efficiently by performing a polynomial 

curve fitting between the image data of m  and p . In a real experiment we get only 

the projection data p . Therefore to get a correlation between m  and p  we have to 

generate a synthetic data set of m . To approximate the monoenergetic data set m , we 

need prior (partial) information about the object. Hence as a first guess of the object, 

we can use the direct reconstruction of the cross-section from the experimental data p  

using CBP.  
 

Let this approximation be 0O . Collecting a new set of relevant information 

including the geometry and the size of the object from the reconstructed image, objects 

iX can be generated at different selected energies from the X-ray source spectrum. 

This step requires that the coefficients of linear attenuation at those energies for the 

particular material be used. The coefficients of linear attenuation for various materials 

can be obtained from handbooks, or can be obtained experimentally in a calibration 

experiment by using a single line of the X-ray beam at a time. From the generated 

objects iX , the approximate projection data im ’s can be obtained from Equation (3). 

Even for a defect free sample im  is different from im  due to the discretization of the 

reconstruction region. But if defects are present in the sample, then im  will have 

information about these defects. This important information will not be present im  in 

the first iteration.  
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The next step is to generate an artificial polyenergetic data p  using Equation (4) 

with )j(τ  as the probability that a detected photon of the X-ray beam is at energy 

)j(e . This is needed in order to get a correlation between im  and p . The 

correlation function ( if ) can be applied to the actual measured data p  recorded in the 

experiment. Theoretically, p  and p  should be identical. But the experimental data p  

varies from p  calculated, because of reasons such that consideration of discrete and 

finite number of energies while calculating p  and experimental errors involved. The 

major source of the difference is defects that are likely to be present in the sample 

being tested. Identifying these defects is the goal of the present work. The approximate 

projection data m  and p  can be determined as follows: 

i
I

1i

i
e z   m ∑

=
= μ       (3) 

 

⎥⎦
⎤

⎢⎣
⎡= ∑∑

==

I

1i

ii
e(j)

J

1j
e(j) z  -     - p μτ expln      (4) 

 
From the above discussion, it is clear that im  approximates im  and p  

approximates p . Central to the proposed numerical algorithm is the observation that 

the function )p(f i  defined as:  

 
)p(f  m ii ≈                   (5) 

 
approximates )p(f i , namely 

 
)p(f  m ii ≈       (6) 

 
In words, the correlation function f determined from the approximate projection data 

(mono and polyenergetic) is sensibly close to the exact function. Further, it can be 

iteratively improved. 
 
To get this correlation function if  a curve fitting strategy between im and p  has 

been utilized. The most inexpensive curve-fitting route is to adopt a polynomial 

function for f , and determine its coefficients, for example, by the least squares 
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technique. Any other image processing operation such as correlation and image 

registration can also be employed. The corrections obtained and the number of 

iterations required in each case will however be different. This function if  obtained 

after correlation can then be applied on the experimental data p  to obtain the 

equivalent monoenergetic projection data set im  of the object under test as in 

Equation (6). CT algorithms such as CBP can be applied to im . 

 
The numerical algorithm can now be summarized as follows: The unknown object 

cross-section is first assessed using polyenergetic data. The function if  is estimated 

with respect to this object. The first iterate of the correlation function is applied to the 

experimentally recorded polyenergetic data of the test object. The first reconstruction 

1iO  is carried out using CBP from )p(f i  as it approximates im . This completes 

the first iteration of beam hardening correction.  Using the individual monoenergetic 

data sets, the cross-section can be repeatedly reconstructed (using, say CBP). The next 

step is to compare with the initial guess 0O . If new features are visible, for example a 

crack or the set of dislocations, the initial guess is improved accordingly and all the 

steps are repeated again. If new features are not visible then the correction algorithm 

will stop.  The solutions obtained at different energies can now be displayed. The 

numerical algorithm described here is summarized in the flow chart of Figure 4. 
 
4. RESULTS AND DISCUSSION 
 

The beam hardening correction algorithm has been tested for computer generated 

objects and has been found to yield good results. A few of the test cases considered are 

presented here. The numerical values of peaks in the X-ray source spectrum used in the 

simulation are given in Table 1. Five different energies have been considered; the 

reconstruction region is assumed to carry three different types of materials. Symbols 

a
)j(eμ , b

)j(eμ  and c
)j(eμ  are the coefficients of linear attenuation for the three types 

of materials namely ‘a’, ‘b’ and ‘c’ respectively at energy )j(e .  

Symbols used in all the reconstructed figures and simulated objects have the 

following meaning: 
 

Min:  Minimum value of the gray scale for material density 
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Max:  Maximum value of the gray scale for material density 

LAvg:  Average value of the gray levels on the horizontal centerline 

AAvg:  Cross-sectionally averaged value of the gray level. 
 

Case 1: The object considered is a circle made up of material ‘a’ with three circular 

holes, one filled with material ‘b’ and two filled with material ‘c’. The number of rays 

and the number of views used in calculating projection data are 128 × 128 respectively.  

Figures 4, 5 and 6 shows the images obtained after applying beam hardening correction 

to the experimental data of the object, at energies )1.0   ( e )1(e)1( =τ , 

)3.0   ( e )2(e)2( =τ  and )2.0   ( e )4(e)4( =τ  respectively. These figures can be 

compared to understand the effect of change in probability )j(eτ  on the 

monoenergetic reconstruction of the object after the beam-hardening correction on the 

projection data at that energy. All energies with different probabilities have been 

considered. Figure 5(a) is the simulated object at energy )1(e . Figure 5(b) is the 

reconstruction of the experimental data by directly applying CBP to it. Figure 5(c) is 

the reconstruction of the experimental data after applying beam hardening correction to 

it at energy )1(e . Figure 6, at energy )2(e  and Figure 7, at )4(e have the same 

reconstruction procedure as given for Figure 5. Here we have considered a defect free 

sample and hence we do not get any new features visible after first iteration of the 

algorithm. Hence beam-hardening correction is complete after the first iteration, and its 

reconstruction has been shown. From these images it is clear that beam hardening 

correction will be more effective for those energies which have higher probabilities 

)j(eτ . As   the probability of detected photon is the least at energy )1(e , the 

experimental data has least contribution from the photons of this energy. This can also 

be observed from Equation (4). Hence, the experimental data does not contain much 

information about the coefficient of linear attenuation of the materials in the object at 

energy )1(e . This explains the non-uniform reconstruction at this energy, as shown in 

the Figure 5(c). It can be observed from the figure that the  reconstruction after 

applying beam hardening correction at energy )2(e  (which has highest probability) is 

more uniform than monoenergetic reconstruction at energy )1(e  and )4(e . In 

principle the algorithm works for all the energies.  It is recommended that beam-
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hardening correction at the energy with the highest probability )j(eτ  be used in 

measurements related to NDT. 
 
Case 2: The object considered is circular in cross-section made up of material ‘a’ with 

a star shaped hole inside, filled with material ‘b’.  The material ‘b’ has a crack in it. 

The small holes are filled with material ‘c’. Results with beam hardening correction for 

this object at all the five energies has been presented in Figures 8-12. As the energy 

)3(e  has highest probability )j(eτ  in the X-ray spectrum, the working of the 

algorithm is explained here taking beam-hardening correction at energy )3(e  as an 

example, Figure 10. The reconstruction of the experimental data ( p ) obtained after the 

X-ray tomography of the object is shown in Figure 10(a). From this reconstruction the 

object type ( 0O ) can be identified. Crack is not an intrinsic property of the object; it is 

present in the particular sample of the object which is defective. The object 0O  is 

simulated at all five energies called iX . 3X  is shown in Figure 10(b). Monoenergetic 

( im ) and polychromatic ( p ) projection data is calculated from iX ’s as explained 

above using Equations (3) and (4) respectively. In the present discussion, the number 

of rays per view are 256 and number of views are 256. Now, the function if , which 

correlates p  and im  can be found out. Here least square curve fitting10 has been used 

to get the coefficients of the polynomial function if  of degree three. This function is 

of the form:  

3
3

2
2103 p a  p a  p a  a  m +++=     (7) 

 
 The coefficients for curve fitting between p  and 3m  are given in Table 2. The 

coefficients 0a , 1a , 2a  and 3a  are used to find im ’s, the monoenergetic data set for 

each energy. CBP is applied to the data for all the five energies. The first 

monoenergetic reconstruction at energy )3(e  is shown in Figure 10(c). In the figure a 

crack is clearly visible. It is a new feature as it was not present in the initial guess 0O  

of the object. It is clear that the beam hardening correction should now be continued. In 

the second iteration, the guessed object 1O  is the one obtained from the previous 

iteration. This is a star-shaped object with a crack at the location where it appeared in 
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previous monoenergetic reconstruction, Figure 10(d). The entire correction process is 

repeated with 1O . The monoenergetic reconstruction after the second iteration is 

shown in Figure 10(e). The coefficients of curve fitting for second iteration are given 

in Table 2. We do not observe any new features in the reconstruction after second 

iteration; hence the beam-hardening correction algorithm can be stopped at this stage. 
 
Case 3: Here the object is identical to case 2 with equal number of rays and views, but 

the degree of polynomial curve fitting is increased to four instead of three. The 

correction procedure is identical to that in Case 2. The coefficients of the curve fitting 

at energy )3(e  are given in Table 3. The results for this geometry are shown in Figures 

13-17. Comparing the results of case 2 and case 3, it can be readily inferred that the 

beam hardening correction procedure leads to an improvement in the monoenergetic 

reconstruction. The improvement in the reconstruction however requires more 

computational power and time. In the present discussion, we have taken with 256 

views and 256 rays. As this number is increased to 512 and later to 1024, the 

computational time rapidly increases. Hence, for general application the third degree 

polynomial curve fit is good enough for beam hardening correction. It can be increased 

in principle for higher accuracy.  
 
5. CONCLUSIONS 

 
Correction for beam hardening is necessary in computerized tomography when the 

radiation source is polyenergetic. An algorithm that can be used for this correction has 

been proposed. The test objects considered consisted of three materials but the 

algorithm could be used with objects that contain more than three materials as well. 

For the correction of beam hardening, the spectrum of the X-ray source and the 

coefficients of linear attenuation of the materials in the object at these energies are 

required. This makes the computer code for beam hardening correction specific to the 

radiation source and the test materials.  
 
Beam hardening correction can be done at any of the lines of the X-ray spectrum. 

Results obtained in the present work show that the mean energy (which has the highest 

probability of detection) is adequate. While any correlation techniques can also be used 

in the algorithm, polynomial curve fitting was seen to be the least expensive, and the 

results obtained were good enough for general applications. The degree of polynomial 
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need not be more than three for a good monoenergetic reconstruction. Thus the 

proposed algorithm was found to be quite robust. 
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Table 1: Spectrum of the X-ray source 

 
 
 
Table 2: Coefficients of curve fitting (using cubic polynomial) for star shaped object at 

energy 3e . 
 

Iterations Coefficients
of 

Polynomial 1st 2nd 

a0 -0.006708 -0.006618 

a1 1.095818 1.094304 

a2 -0.332331 -0.326000 

a3 0.183701 0.176194 
 
 
 
Table 3: Coefficients of curve fitting (using fourth order polynomial) for star shaped 

object at energy 3e . 
 

Iterations Coefficients
of 

Polynomial 1st 2nd 

a0 0.001211 0.001371 

a1 0.940517 0.936821 

a2 0.503585 0.525740 

a3 -1.491593 -1.539218 

     a4 1.120672 1.153372 
 
 
 

j τe(j) 
μa

e(j)  
(cm-1) 

μb
e(j) 

 (cm-1) 
μc

e(j) 
 (cm-1) 

Energy      
(k eV) 

1 0.1 0.265 0.999 0.632 41 

2 0.3 0.226 0.595 0.411 52 

3 0.3 0.210 0.416 0.313 60 

4 0.2 0.183 0.265 0.224 84 

5 0.1 0.174 0.208 0.191 100 
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Figure 1: Parallel beam geometry for the collection of projection data 
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 Figure 2: A typical X-ray energy spectrum for tungsten. 
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              Min = 0.0925                                Max = 0.6775 
              LAvg = 0.3397                           AAvg = 0.4922 

                                                          (a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                     Min = 0.0000                                Max = 0.4160                                            
              LAvg = 0.2594                            AAvg = 0.3531                                           

 
                    (b) 

 
 
 

Figure 3: Reconstructed star shaped object of a two-density material: (a) without the application of beam 
hardening correction (b) after the application of beam hardening corrections. Note that in (b), the small 
circles are well-resolved. 
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Figure 4: Flow chart for the beam hardening correction procedure. 
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  Min = 0.0000                       Max = 0.9990                 Min = 0.0555                       Max = 0.4675                         

LAvg = 0.4485                  AAvg = 0.3793                 LAvg = 0.2711                  AAvg = 0.2499              
  (a)       (b) 

          
       

 
         

 Min = 0.0432                        Max = 1.0478 
                                    LAvg = 0.4575                    AAvg = 0.3788 
              (c) 
 
Figure 5:  Correction for beam hardening on simulated data with 128 rays and 128 views: (a) Simulated 
object at energy 1e , (b) Reconstruction of the generated experimental data by directly applying CBP, 

(c) Reconstruction of the corrected data at energy 1e . 
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              Min = 0.0000                         Max = 0.5950              Min = 0.0555                         Max = 0.4675    
              LAvg = 0.3185                    AAvg = 0.2835              LAvg = 0.2711                    AAvg = 0.2499              

(a)           (b) 
 
                                              

 
         

Min = 0.0523                         Max = 0.6127 
LAvg = 0.3197                   AAvg = 0.2837 

               (c) 
 
Figure 6: Correction for beam hardening on simulated data with 128 rays and 128 views: (a) Simulated 
object at energy 2e , (b) Reconstruction of the generated experimental data by directly applying CBP, 

(c) Reconstruction of the corrected data at energy 2e . 
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             Min = 0.0000                         Max = 0.2650               Min = 0.0555                          Max = 0.4675      
             LAvg = 0.2035                    AAvg = 0.1958               LAvg = 0.2711                     AAvg = 0.2499               
                                          (a)                  (b) 
 

          

 
 

                                                Min = 0.0537                          Max = 0.3434 
                                                LAvg = 0.1992                     AAvg = 0.1964 

        (c) 
 
Figure 7: Correction for beam hardening on simulated data with 128 rays and 128 views: (a) Simulated 
object at energy 4e , (b) Reconstruction of the generated experimental data by directly applying CBP, 

(c) Reconstruction of the corrected data at energy 4e .   
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 Min = 0.0536                       Max = 0.5455                          Min = 0.0000                        Max = 0.9990 
 LAvg = 0.3891                  AAvg = 0.2812                         LAvg = 0.8384                   AAvg = 0.4750 
      (a)                                             (b) 

                         
 Min = - 0.2284                    Max = 1.3594             Min = 0.0000              Max = 0.9990 
 LAvg = 0.8455                  AAvg = 0.4763             LAvg = 0.8384             AAvg = 0.4731 
         (c)                                     (d)  

 
        Min = -0.2370                       Max = 1.3680           
              LAvg = 0.8501                   AAvg = 0.4770       
               (e) 
Figure 8: Correction for beam hardening on simulated data for star shaped object with a crack for 256 
rays and 256 views: (a) Reconstruction of the generated experimental data by directly applying CBP, (b) 
Simulated object without the crack at energy e1, (c) Reconstruction after the first iteration of beam 
hardening correction using cubic polynomial at energy e1, (d) Simulated object with the crack at energy 
e1, (e) Reconstruction after the second iteration of beam hardening correction using cubic polynomial at 
energy e1.                
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Min = 0.0536                        Max = 0.5455                     Min = 0.0000               Max = 0.5950 
LAvg = 0.3891                   AAvg = 0.2812           LAvg = 0.5143                    AAvg = 0.3314           
                    (a)       (b)       

               
Min = -0.0147                  Max = 0.7655            Min = 0.0000               Max = 0.5950 
LAvg = 0.5129                   AAvg = 0.3325            LAvg = 0.5143                   AAvg = 0.3303 
                   (c)                                                                                                        (d) 

 
        Min = -0.0169          Max = 0.7677 
        LAvg = 0.5140       AAvg = 0.3327 
                            (e) 
Figure 9: Correction for beam hardening on simulated data for star shaped object with a crack for 256 
rays and 256 views: (a) Reconstruction of the generated experimental data by directly applying CBP, (b) 
Simulated object without the crack at energy e2, (c) Reconstruction after the first iteration of beam 
hardening correction using cubic polynomial at energy e2, (d) Simulated object with the crack at energy 
e2, (e) Reconstruction after the second iteration of beam hardening correction using cubic polynomial at 
energy e2. 
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Min = 0.0536                        Max = 0.5455                         Min = 0.0000               Max = 0.4160          
LAvg = 0.3891                   AAvg = 0.2812            LAvg = 0.3709                   AAvg = 0.2689 
                  (a)         (b)    

               
Min = 0.0399                        Max = 0.5015                          Min = 0.0000                        Max = 0.4160 
LAvg = 0.3656                   AAvg = 0.2697             LAvg = 0.3709                   AAvg = 0.2681 
     (c)       (d) 

 
        Min = 0.0401                        Max = 0.5009           
                                                 LAvg = 0.3653                   AAvg = 0.2697       
              (e) 
Figure 10: Correction for beam hardening on simulated data for star shaped object with a crack for 256 
rays and 256 views: (a) Reconstruction of the generated experimental data by directly applying CBP, (b) 
Simulated object without the crack at energy e3, (c) Reconstruction after the first iteration of beam 
hardening correction using cubic polynomial at energy e3, (d) Simulated object with the crack at energy 
e3, (e) Reconstruction after the second iteration of beam hardening correction using cubic polynomial at 
energy e3. 
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Min = 0.0536                        Max = 0.5455                          Min = 0.0000                        Max = 0.2650 
LAvg = 0.3891                   AAvg = 0.2812             LAvg = 0.2471                   AAvg = 0.2065 
                               (a)       (b)    

                           
Min = 0.0144                        Max = 0.3035                          Min = 0.0000                        Max = 0.2650 
LAvg = 0.2396                   AAvg = 0.2071            LAvg = 0.2471                    AAvg = 0.2060 

                     (c)           (d) 

 
        Min = 0.0149                        Max = 0.3033           
                                                 LAvg = 0.2383                   AAvg = 0.2069       
                 (e) 
Figure 11: Correction for beam hardening on simulated data for star shaped object with a crack for 256 
rays and 256 views: (a) Reconstruction of the generated experimental data by directly applying CBP, (b) 
Simulated object without the crack at energy e4, (c) Reconstruction after the first iteration of beam 
hardening correction using cubic polynomial at energy e4, (d) Simulated object with the crack at energy 
e4, (e) Reconstruction after the second iteration of beam hardening correction using cubic polynomial at 
energy e4. 
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Min = 0.0536                        Max = 0.5455                          Min = 0.0000                        Max = 0.2080 
LAvg = 0.3891                   AAvg = 0.2812            LAvg = 0.2006                    AAvg = 0.1837 
                              (a)        (b)    

                           
Min = 0.0045                    Max = 0.2564                          Min = 0.0000                        Max = 0.2080 
LAvg = 0.1922                    AAvg = 0.1843                   LAvg = 0.2006                   AAvg = 0.1833 

                               (c)        (d) 

 
        Min = 0.0056                        Max = 0.2562           
                                                LAvg = 0.1896                    AAvg = 0.1839       
                (e) 
Figure 12: Correction for beam hardening on simulated data for star shaped object with a crack for 256 
rays and 256 views: (a) Reconstruction of the generated experimental data by directly applying CBP, (b) 
Simulated object without the crack at energy e5, (c) Reconstruction after the first iteration of beam 
hardening correction using cubic polynomial at energy e5, (d) Simulated object with the crack at energy 
e5, (e) Reconstruction after the second iteration of beam hardening correction using cubic polynomial at 
energy e5. 
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Min = 0.0536                        Max = 0.5455                           Min = 0.0000                       Max = 0.9990 
LAvg = 0.3891                   AAvg = 0.2812                          LAvg = 0.8384                  AAvg = 0.4750 
                      (a)                                                (b) 

                               
Min = -0.1191                   Max = 1.3355              Min = 0.0000              Max = 0.9990 
LAvg = 0.8079                 AAvg = 0.4742              LAvg = 0.8384             AAvg = 0.4731 
                    (c)                                        (d) 

 
        Min = -0.2370                      Max = 1.3680           
             LAvg = 0.8501                   AAvg = 0.4770       
               (e) 
Figure 13: Correction for beam hardening on simulated data for star shaped object with a crack for 256 
rays and 256 views: (a) Reconstruction of the generated experimental data by directly applying CBP, (b) 
Simulated object without the crack at energy e1, (c) Reconstruction after the first iteration of beam 
hardening correction using fourth degree polynomial at energy e1, (d) Simulated object with the crack at 
energy e1, (e) Reconstruction after the second iteration of beam hardening correction using fourth degree 
polynomial at energy e1. 
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Min = 0.0536                        Max = 0.5455                            Min = 0.0000               Max = 0.5950 
LAvg = 0.3891                   AAvg = 0.2812              LAvg = 0.5143                  AAvg = 0.3314          
                   (a)                          (b)   

                                   
Min = 0.0084                  Max = 0.7604                       Min = 0.0000               Max = 0.5950 
LAvg = 0.5049                   AAvg = 0.3321             LAvg = 0.5143                   AAvg = 0.3303 
     (c)                                                                                         (d) 

 
        Min = -0.0169          Max = 0.7677 

         LAvg = 0.5140        AAvg = 0.3327 
              (e) 

Figure 14: Correction for beam hardening on simulated data for star shaped object with a crack for 256 
rays and 256 views: (a) Reconstruction of the generated experimental data by directly applying CBP, (b) 
Simulated object without the crack at energy e2, (c) Reconstruction after the first iteration of beam 
hardening correction using fourth degree polynomial at energy e2, (d) Simulated object with the crack at 
energy e2, (e) Reconstruction after the second iteration of beam hardening correction using fourth degree 
polynomial at energy e2. 
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Min = 0.0536                        Max = 0.5455             Min = 0.0000               Max = 0.4160          
LAvg = 0.3891                   AAvg = 0.2812             LAvg = 0.3709                   AAvg = 0.2689                   
                  (a)        (b)    

                           
Min = 0.0553                        Max = 0.5051            Min = 0.0000                        Max = 0.4160 
LAvg = 0.3711                   AAvg = 0.2700            LAvg = 0.3709                    AAvg = 0.2681 
      (c)                      (d) 

 
        Min = 0.0556                        Max = 0.5049           
                                                LAvg = 0.3712                   AAvg = 0.2700     

               (e) 
Figure 15: Correction for beam hardening on simulated data for star shaped object with a crack for 256 
rays and 256 views: (a) Reconstruction of the generated experimental data by directly applying CBP, (b) 
Simulated object without the crack at energy e3, (c) Reconstruction after the first iteration of beam 
hardening correction using fourth degree polynomial at energy e3, (d) Simulated object with the crack at 
energy e3, (e) Reconstruction after the second iteration of beam hardening correction using fourth degree 
polynomial at energy e3. 
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Min = 0.0536                        Max = 0.5455                Min = 0.0000                        Max = 0.2650 
LAvg = 0.3891                   AAvg = 0.2812            LAvg = 0.2471                   AAvg = 0.2065 

                                      (a)           (b)   

                           
Min = 0.0535                       Max = 0.2987            Min = 0.0000                        Max = 0.2650 
LAvg = 0.2535                  AAvg = 0.2071            LAvg = 0.2471                   AAvg = 0.2060 
    (c)                       (d) 

 
        Min = 0.0545                       Max = 0.2988           
                                                LAvg = 0.2533                   AAvg = 0.2077       
                                                                   (e)   
Figure 16: Correction for beam hardening on simulated data for star shaped object with a crack for 256 
rays and 256 views: (a) Reconstruction of the generated experimental data by directly applying CBP, (b) 
Simulated object without the crack at energy e4, (c) Reconstruction after the first iteration of beam 
hardening correction using fourth degree polynomial at energy e4, (d) Simulated object with the crack at 
energy e4, (e) Reconstruction after the second iteration of beam hardening correction using fourth degree 
polynomial at energy e4. 
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Min = 0.0536                        Max = 0.5455             Min = 0.0000                        Max = 0.2080 
LAvg = 0.3891                   AAvg = 0.2812             LAvg = 0.2006                   AAvg = 0.1837 
                                (a)                        (b)   

                           
Min = 0.0533                        Max = 0.2505                          Min = 0.0000                        Max = 0.2080 
LAvg = 0.2096                   AAvg = 0.1852             LAvg = 0.2006                   AAvg = 0.1833 
                                 (c)       (d) 

 
        Min = 0.0545                        Max = 0.2505           
                                                 LAvg = 0.2092                   AAvg = 0.1850       
                   (e) 
Figure 17: Correction for beam hardening on simulated data for star shaped object with a crack for 256 
rays and 256 views: (a) Reconstruction of the generated experimental data by directly applying CBP, (b) 
Simulated object without the crack at energy e5, (c) Reconstruction after the first iteration of beam 
hardening correction using fourth degree polynomial at energy e5, (d) Simulated object with the crack at 
energy e5, (e) Reconstruction after the second iteration of beam hardening correction using fourth degree 
polynomial at energy e5. 


